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Abstract 

Force estimation based on electromyography (EMG) has been proven to be useful for deriving proportional 

control for myoelectric devices. Muscle synergies seem to be relevant for force estimation since they are patterns of co- 

activation of muscles during actions. This study investigates the use of muscle synergies extracted from targeted 

surface EMG for estimating force during multiple-degree-of-freedom (DoF) contractions involving the wrist and hand. 

For this purpose, muscle synergies were extracted from twelve forearm muscles from eight able-bodied subjects. The 

constrained isotonic force produced by the wrist and the hand during these contractions was recorded along multiple 

axes, each responsible for one DoF. The derived neural inputs were then input into an artificial neural network (ANN) 

to estimate the force. The results were evaluated by comparing them with those obtained using mean absolute values 

(MAVs) for force estimation. The results obtained using muscle synergies were significantly better (p < 0.05) than 

those obtained using MAVs in the estimation of force when training with both 1- and 2-DoF contractions (p = 0.02) 

and also when training with only 1-DoF contractions (p = 0.001). The latter case was important, as a training protocol 

that includes all desired 2-DoF contractions is very difficult for amputee users. For this case, the results obtained using 

muscle synergies were significantly improved compared to those obtained using MAVs. In addition, the robustness of 

muscle synergies was examined across different force levels. The results indicate that muscle synergies are robust and 

reliable for the force estimation of multiple-DoF tasks, and are thus a promising approach for the proportional control 

of prostheses. 
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1. Introduction 

The design and control of dexterous upper limb prostheses 

is a very challenging task. Despite many breakthroughs over 

the last several years [1-4], there is still a considerable gap 

between human hands and artificial hands in the efficacy of 

imparting control [5,6]. Current electromyography (EMG) 

signal processing solutions for decoding a user’s intended 

movement are still unable to provide intuitive and reliable 

proportional force control for amputees. In fact, it is quite 

common for upper limb amputees to reject the use of their 

prostheses because of low functionality, among other reasons 

[7-9]. One important factor in the proportional control of 

prostheses is to estimate the level of muscle activity produced 

by the user performing a task [10-12]. For example, accurate 

grip force control is essential in performing activities such as 
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the grasping of fragile objects, resistance to external forces (e.g., 

holding a spoon to resist gravity), and applying movement to an 

object (e.g., turning a knob) [13]. 

One major viewpoint concerning the paradigm that the 

neuromotor system uses for muscle coordination to accomplish 

movement is based on the modularity of motor control [14-16]. 

This viewpoint hypothesizes predetermined patterns of the co- 

activation of muscles, i.e., muscle synergies, during task 

performance as the primitive modules of muscle coordination 

[17]. These muscle synergies imply a coupled activation of a 

group of muscles. Redundancy in the neuromotor system 

potentially allows for multiple modalities of muscle 

coordination to produce sub-maximal forces for different tasks 

[18]. Hence, the relative proportions of muscle activations could 

potentially change with the conditions of force level during a 

movement. 

The scaling of muscle synergies is a necessary property of 

the neuromotor synergy hypothesis [19]. The muscles within a 

synergy should maintain the same relative activation levels, and 

the synergies involved within a task should remain consistent 

with an increase in the task’s force requirements. The scalability 
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of inputs in myoelectric control paradigms is important because 

it allows for the implementation of proportional control, i.e., the 

speed of the motors of the controlled device is directionally 

proportional to the magnitude of the input signal. The activation 

levels of muscles embedded in synergies in addition to the 

activation levels (weights) of synergies can be considered a 

mechanism for proportional control. If it can be shown that their 

generality exists within a wide range of produced force, 

proportional control might be accomplished more accurately in 

a control space of a lower dimension via synergies. In spite of 

the interesting attributes of muscle synergies, little research has 

been performed toward using these modules to control 

prosthetic hands. Only two major studies [20,21] have examined 

the concept of muscle synergies as a dimensionality reduction 

paradigm for the production of a wide variety of human hand 

postures. 

The study by Weis and Flanders [20] described the hand 

postures associated with the ASL alphabet and with the 

grasping of everyday objects with a low-dimensional set of 

muscle synergies, and to align these muscle synergies with 

postural synergies of the hand. While informative, this study 

failed to make a compelling case that the new framework 

established by their extracted synergies was useful within a 

physiological control paradigm. The efficacy of this framework 

in predicting new hand postures, which speaks to its robustness 

and generalizability, is a testable and necessary hypothesis 

given the accepted definition of muscle synergies [19]. 

However, this was not explored in their work. In short, the 

work of Weiss and Flanders only established that muscle 

synergies can form a descriptive framework for a wide variety 

of known hand postures. 

Ajiboye and Weir determined that muscle synergies form 

a robust lower-dimensional framework for the prediction of the 

EMG patterns of new static hand postures. They also 

performed another investigation that characterized, through a 

virtual target reaching task, the volitional independence and 

simultaneous control of multiple degrees of freedom (DoFs) 

using muscle synergies versus single-muscle inputs [21]. 

However, their results were based on four muscle synergies 

that they defined as the best synergies. As mentioned in [21], 

examining more complex tasks with a higher number of 

synergies may indicate the superiority of utilizing the synergy 

paradigm over the individual muscle paradigm. Their results 

showed that the dominant synergies involved in cylindrical and 

lateral force-tracking tasks linearly scale with grasp force. 

Nevertheless, none of these studies examined the power of 

muscle synergies in estimating the produced force. 

The present study primarily investigates the capability of 

muscle synergies to provide effective proportional force control 

by extracting synergies with their associated positive weighting 

coefficients (neural inputs) from recorded muscular activities 

from 12 muscles during various wrist/hand motions. It is 

hypothesized that, through muscle synergies, prosthetic devices 

may be controlled more naturally and in a physiologically 

expected manner. This study also quantifies the robustness and 

repeatability of the muscle synergies that are involved in 

producing various wrist/hand movements across various 

exerted force levels. For this purpose, an artificial neural 

network (ANN) estimator was trained by mapping the neural 

inputs extracted from a set of motions to a recorded force. The 

force estimator was then evaluated at force levels that were 

different from those of the training set, and with multiple-DoF 

motions that were combinations of the trained motions. 

2. Materials and methods 

2.1 Data collection 

The experimental protocol was approved by the University 

of New Brunswick’s Research Ethics Board. Eight normally 

limbed subjects participated, one female and seven males 

within an age range of 23 to 53 years, all right-handed (referred 

to as Sub1-Sub8). Subjects had no history of neuromuscular 

disorders. 

Surface EMG (sEMG) data were collected from 12 

superficial muscles (flexor carpi ulnaris (FCU), palmaris 

longus (PL), flexor carpi radialis (FCR), extensor carpi radialis 

(ECR), extensor digitorum communis (EDC), extensor carpi 

ulnaris (ECU), and biceps) and five intermediate and deep 

muscles at the site where they are accessible (flexor digitorum 

superficialis (FDS), flexor policis longus (FPL), pronator teres 

(PT), flexor digitorum profundus (FDP), and brachioradialis 

(BR)). Muscles were identified and the EMG electrodes 

(bipolar silver/silver chloride, Doutrode, Myotronics, Inc., 5870 

S. 194th Street, Kent, WA 98032, USA) were placed on the 

belly of each muscle. A reference electrode was placed on top 

of the lateral epicondyle. sEMG signals were amplified with a 

gain of 5000, bandpass-filtered between 10-500 Hz and analog/ 

digital sampled with 12-bit resolution. 

Subjects were required to perform different constrained 

isotonic movements associated with two DoFs of the wrist, 

including extension, flexion, pronation, and supination, as well 

as four DoFs of the hand, including power, pinch, key, and 

spherical grasps. Combinations of the wrist and hand motions 

were performed as well. Subjects exerted force while seated in 

a chair with their right arm placed in an armrest. A custom- 

made hand support incorporating a commercially available 

dynamometer (Gamma FT-130-10, ATI Industries) was used to 

record and provide feedback to the subjects about the level of 

wrist activation for each task. Grasp force was estimated by 

measuring the fingertip forces, as successfully employed by 

others [22]. To perform the grasping tasks, four different 

objects, each associated with one grasp type, were chosen for 

the subjects to hold. These objects were equipped with force- 

sensitive resistor (FSR) sensors (custom-made, 1 cm × 1 cm) 

on their surface to measure the force applied by the fingertips. 

All signals were sampled at a rate of 1000 samples per second. 

2.2 Experimental procedure 

The maximum voluntary contraction (MVC) for each 

subject was recorded to normalize the force levels required 

during the experiment. MATLAB-based software was used to 

guide subjects through a data acquisition session. Each 

experimental session consisted of 96 trials, each of which 
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contained two repetitions of a 1- or 2-DoF task. Subjects were 

prompted to complete four low (25% MVC) and four medium 

(50% MVC) force contractions of each task followed by a five- 

minute rest period between each set of twelve trials. Each task 

took roughly six seconds; the exact duration was dependent on 

the subject’s preference. 

2.3 Extracting muscle synergies 

According to the muscle synergy hypothesis, any given 

muscle response should be describable as the linear 

combination of a small number of muscle activation patterns or 

muscle synergies [23]. Further, both the elements of the 

synergies and their weighting within each response should be 

positive, because muscle activations are being considered. 

Tresch et al. [23] proposed the following model for the muscle 

synergy hypothesis: 
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for the jth observed pattern of muscle activations. In the model, 

hij is the neural input or the positive weighting coefficient of 

the ith muscle synergy for the jth response, wi is the ith muscle 

synergy, and N is the number of muscle synergies. The full 

model written in matrix form is: 

onnmom HWV                                     (2) 

where V is the m ×  o (m muscles, o observations) recorded 

EMG data matrix, W is the m ×  n (n synergies, m > n) column- 

wise matrix of synergies, and H is the n ×  o matrix of time- 

varying neural inputs. V is given, and W and H are to be 

determined. Equation (2) indicates that every matrix of EMG 

observation can be decomposed into a synergy matrix and its 

correspondent coefficient matrix. During training, V is the 

entire training set, used to compose the W synergy matrix. 

During classification of the test set, V is a 200-ms analysis 

window, projected onto a novel H matrix using the W matrix. 

Identification of muscle synergies can be done through 

methods such as principal components analysis (PCA), 

maximum likelihood factor analysis (FA), non-negative matrix 

factorization (NMF), and independent component analysis 

(ICA). NMF is the most common method used to identify 

muscle synergies and their activation coefficients underlying a 

set of muscle activation patterns [24], not only because the 

synergy components discerned by NMF likely have more 

physiological relevance due to the restriction of non-negativity 

[25], but also because it does not restrict the discerned synergies 

to be orthogonal or statistically independent, as do PCA and 

ICA, respectively [26]. 

The appropriate number of synergies was determined as the 

smallest number of components necessary to explain at least 

90% of the variance of the recorded sEMG for each subject 

using NMF. Figure 1 shows how this explained variance grows 

by increasing the number of synergies for a typical subject. For 

all the subjects, six or seven synergies were sufficient to 

describe 90% of the variance. In order to keep them within the 

bandwidth of the measured force, the estimated neural inputs 

were lowpass-filtered at 2 Hz before being input into the force 

estimator model. 

 

Figure 1. Change in described variance with number of synergies (axes 

are unitless). 

2.4 Data analysis 

After the synergies were extracted, the associated neural 

inputs were input into an ANN. The target of the ANN was the 

measured force in each DoF during training. With novel EMG 

data, the output is an estimate of produced force. The ANNs 

were trained using the backpropagation (Levenberg-Marquardt) 

algorithm. 

The 50% MVC data were used to develop training and 

validation sets in order to find the optimal structure for the 

ANN. The validation set was used to determine the optimum 

number of hidden-layer neurons (eight), and to determine a 

stopping criterion for ANN training (when either the validation 

error increased for six sequential epochs or the error went 

below a predefined threshold of 0.001). 

Data were segmented using 200-ms windows with a 50- 

ms increment. The ANN was trained 50 times and the ANN 

with the lowest error on the validation data was used for testing 

in order to estimate the 25% MVC data. 

The test analysis was performed on analysis windows of 

200 ms in duration. The processing delay for this 200-ms 

analysis window is minimal (less than 10 ms). It is generally 

accepted that for a real-time application of the prostheses, the 

response time should not exceed 300 ms. 

2.4.1 Force estimation 

The low-contraction profiles (25% MVC) were used for 

testing and the medium-contraction profiles (50% MVC) were 

used for training and validating the force estimator model. Of 

the medium contraction data (training set), 85% (randomly 

chosen) were used during training and the remaining 15% were 

used for validation. The training set consisted either of solely 

1-DoF or of both 1- and 2-DoF contractions, depending on the 

estimation scenario, as described below. 

Two estimation scenarios were considered, both utilizing a 

predefined set of tasks from which the synergies were extracted. 

The extracted synergies were then used for calculating the 

neural inputs of test data. Since, for each subject, eight 

repetitions of each task were recorded, different training sets 

could be created for each subject. 

In the first scenario (2-DoF training), the estimator model 

was trained (at medium level) and tested (at low level) using 

both single and combined DoF tasks. The training set of this 

scenario consisted of all repetitions of all 50% MVC 1- and 
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2-DoF tasks. In the second scenario (1-DoF training), the 

2-DoF tasks were eliminated from the training set, making it 

more practical in terms of the time and effort required of an 

amputee to train the system. This presents a more challenging 

estimation scenario, as the force estimator must generalize to 

2-DoF tasks. However, the test set still contained both 1- and 

2-DoF contractions. 

The performance of force estimation analysis using 

synergies was investigated, and compared to that of using the 

channel-based mean absolute values (MAVs) of the EMG as 

inputs to the ANN. 

The ability of the ANN to estimate force was quantified 

using the coefficient of determination (R2) and root-mean- 

square error (RMSE). Here, RMSE is defined as the error 

between the actual and estimated force. 

2.4.2 Repeatability and robustness of muscle synergies 

The repeatability of synergy patterns is defined here to 

describe the consistency of results when extracting synergy 

patterns from the same set of tasks during multiple runs of the 

extraction algorithm. This repeatability test was conducted 

within one experiment and across different repetitions of the 

same tasks of the same force level. 

The repeatability of the synergies was examined by 

extracting them from predefined sets of tasks. All tasks were 

included and each set contained two repetitions of low- or 

medium-contraction tasks. Therefore, for each subject, four sets 

were created; two containing only 25% MVC tasks and two 

containing only 50% MVC tasks. The synergies were extracted 

from these four sets for each subject to determine how 

repeatable they are in different repetitions of tasks under the 

same conditions. 

Generally, a system is robust when it resists change 

without a need to adapt its initial configuration. Here, the 

robustness of synergy sets against the force change was tested 

and their ability to cope with changes in force levels in force 

estimation was examined. This means that for a set of tasks, 

changing the force level of the tasks should not affect the 

synergy patterns significantly. This robustness examination also 

can be extended to other variations such as electrode placement 

and electrode-skin impedance. 

To examine this robustness, the four sets were used. Here, 

the difference between the extracted synergies from these tasks 

and their correspondent coefficients was studied. 

2.4.3 Statistical analysis 

An analysis of variance (ANOVA) with factors Synergies 

and MAV was performed on the each performance metric (R2 

and RMSE), with p-values less than 0.05 considered significant. 

Results are provided as means ± standard error across subjects. 

3. Results and discussion 

3.1 Repeatability and robustness of muscle synergies 

Figure 2(a) (the first two rows) shows the synergies 

extracted from two low-contraction sets for two of the subjects. 

As shown, the synergies extracted from the base sets are almost 

the same. This was typical for each subject, demonstrating 

good repeatability of the synergies. To quantify this, the 

correlation between the synergies extracted from each base set 

and the average of the results for all subjects was calculated. 

The correlation was 0.9934 ± 0.005. 

 Sub 1 Sub 2 

25% MVC 

  

25% MVC 

  
(a) 

50 % 
MVC 

  

50 % 
MVC 

  
(b) 

Figure 2. Comparison of synergies extracted from (a) two 25% MVC 

base sets and (b) two 50% MVC base sets for two subjects. 

The y (radial) axis measures the synergies magnitudes and 

has arbitrary units. 

The same examination was performed for all eight 

subjects. Comparing the rows of Fig. 2(a) with those of 

Fig. 2(b), the synergies are scaled but their patterns are fairly 

consistent across different force levels. The correlation 

coefficients calculated between the synergy patterns of low- 

and high-contraction sets were very close to unity (the average 

was 0.9948 ± 0.004), which shows a strong linear relation 

between the two synergy sets and supports the robustness of 

synergies against force change. Since synergy analysis involves 

decomposing the EMG into the product of the synergy matrix 

and the neural inputs, this suggests that the estimated neural 

inputs may be effective in estimating force levels. 
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3.2 Force estimation 

For the simple estimation problem (Scenario 1: 2-DoF 

training), the average (across subjects) of RMSE was 

0.76 ± 0.42 and 0.88 ± 0.53 (p = 0.002) using synergies and 

MAVs, respectively. The average of R2 was 0.84 ± 0.08 when 

using synergies and 0.84 ± 0.10 (p = 0.024) when using MAVs. 

Figure 3 shows the result of force estimation using six neural 

inputs for a sample segment of data including wrist extension 

and power grip performed by one subject. Figure 4 shows the 

RMSE and R2 values averaged across all the subjects. 

 
(a) 

 
(b) 

Figure 3. Sample (a) wrist extension and (b) power grip forces 

estimated using six neural inputs for a sample set of two 

repetitions. The illustrated force values are already 

down-sampled by a window length of 200 ms and in 

increments of 50 samples. The units of RMSE are the same as 

those of force measurements (N). 

 
RMSE 

(a) 

 
R2 
(b) 

Figure 4. RMSE and R2 values of force estimation in the 2-DoF 

training problem using synergies. The results are averaged 

across all eight subjects. The blue bars show the values 

associated with each plot for the wrist force axis and the red 

bars show those for the grasp force axis. 

As can be seen in Fig. 4, generally better results were 

achieved in wrist force estimation than in grasps. The reason 

for this is likely that hand articulations distribute force across 

multiple fingertips, and thus a consistent estimate of grasp 

force is difficult. Another source of error may be the low 

accuracy of the force measurements using FSRs. These sensors 

are nonlinear and they drift during the measurements. Also, 

subjects’ fingers could have slipped off one or a few sensors 

while performing the tasks. However, the relatively high R2 

values still show that the estimation results can be acceptable, 

particularly in 1-DoF tasks, considering the fact that only one 

feature of the EMG signal is being used for estimating force. 

Figure 5 compares the results obtained using synergies 

with those obtained using MAVs. The results show that 

synergies are able to estimate the force and in a majority of the 

tasks outperform MAVs in force estimation. Performing 

multivariate ANOVA on RMSE and R2 showed that the 

methods are significantly different (p < 0.05) and that the 

results achieved by synergies are better. 

 
RMSE 

(a) 

 
R2 
(b) 

Figure 5. Comparison of results obtained using synergies with those 

obtained using MAVs in 2-DoF training problem. The results 

are averaged across all the subjects. 

These results can be explained by the fact that the muscle 

synergies and their associated neural inputs show how different 

muscles co-activate in performing different tasks and describe 

their relative involvement in each task independent from the 

force level produced. This is an important factor that makes the 

muscle synergies a powerful input for force estimation in 

proportional control. 

In the more challenging estimation problem (Scenario 2: 

1-DoF training), the average across subjects of R2 was 

0.76 ± 0.22 when using synergies and 0.52 ± 0.49 when using 

MAVs, showing a significant difference (p = 0.002). RMSE 

was 0.90 ± 0.43 and 1.17 ± 0.64 for synergies and MAVs, 

respectively (p = 0.002). 

Figure 6 shows the results obtained using synergies and 

compares them to those obtained using MAVs. The first thing 

that can be seen in the figure is that the force estimation was 

more accurate for 1-DoF tasks in comparison with the 

combined tasks. This was expected since the combined tasks 

were unknown to the model and estimating the force produced 

during those tasks from the signals associated with them is 

more challenging for the model. However, the relatively high 

R2 values for many of the combined task profiles show that the 

model trained with the synergies of only 1-DoF tasks has the 
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potential to be used for force estimation in more complex and 

untrained tasks. The large estimation error, shown in Fig. 3, can 

be the result of scaling and/or delay in estimation with respect 

to the target. It is possible that this mismatch could be 

accommodated using an estimator with a temporal component, 

such as a time-delay neural network. 

 
RMSE 

(a) 

 
R2 
(b) 

Figure 6. Comparison of results obtained using synergies with those 

obtained using MAVs in 1 DoF training problem. The results 

are averaged across all the subjects. 

Another interesting observation from Fig. 6 is that while 

the results obtained using synergies and MAVs are nearly the 

same for 2-DoF training, synergies clearly outperform MAVs 

for 1-DoF training. These results explain that the neural inputs 

extracted from 1-DoF tasks contain important information that 

can be used to estimate the force produced during simultaneous 

tasks. This advantage of using synergies is supported by the 

fact that in the complex problem, the R2 of only 4 out of 16 

complex tasks was below 0.6, and all of them were above 0.5. 

Also, the model was trained and tested for various tasks and 

various subjects and the results were consistent across all these 

situations, proving that the results were not due to a random 

factor or limited to a particular data set or task. This suggests 

that the superposition property of muscle synergies allows the 

neural inputs to be effective for force estimation of more 

complex, multi-DoF tasks. 

4. Conclusion 

The muscle synergies extracted from a set of wrist and 

hand tasks demonstrated good repeatability for different 

repetitions of the same tasks and were quite robust across 

different force levels. The results indicate that muscle synergies 

show good progress toward force estimation of multi-DoF tasks. 

The R2 values demonstrate that neural inputs outperform MAVs 

in multi-DoF force estimation. When tested with an unknown 

force level, the neural inputs outperformed MAVs, particularly 

when trained with a practical protocol of 1-DoF contractions. 

This demonstrates that synergies have good potential to be used 

in estimating the force produced during multi-DoF force- 

varying tasks, which can be a valuable step toward improving 

proportional control of prostheses. 

Furthermore, the number of neural inputs for force 

estimation are fewer than the number of muscles involved in 

the movement, reducing the dimension of the estimation model, 

and thus the computational requirements. 
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