
Computer Networks 106 (2016) 161–170

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

BeaQoS: Load balancing and deadline management of queues in an

OpenFlow SDN switch

L. Boero

a , M. Cello

b , ∗, C. Garibotto

a , M. Marchese

a , M. Mongelli c

a University of Genoa, Via all’Opera Pia 13, 16145, Genova, Italy
b Nokia Bell Labs, Blanchardstown Business & Technology Park, Snugborough Road, Dublin 15, Ireland
c National Research Council, Via De Marini 6, 16149, Genova, Italy

a r t i c l e i n f o

Article history:

Received 17 August 2015

Revised 25 March 2016

Accepted 20 June 2016

Available online 24 June 2016

Keywords:

SDN

OpenFlow

Packet loss

Traffic engineering

a b s t r a c t

Current OpenFlow specification is unable to set the service rate of the queues inside OpenFlow devices.

This lack does not allow to apply most algorithms for the satisfaction of Quality of Service requirements

to new and established flows. In this paper we propose an alternative solution implemented through

some modifications of Beacon, one popular SDN controller. It acts as follows: using ‘almost’-real-time

statistics from OpenFlow devices, Beacon will re-route flows on different queues to guarantee the obser-

vance of deadline requirements (e.g. the flow is still useful if, and only if, is completely received by a

given time) and/or an efficient queue balancing in an OpenFlow SDN switch. Differently from the litera-

ture, we do not propose any new primitive or modification of the OpenFlow standard: our mechanism,

implemented in the controller, works with regular OpenFlow devices. Our changes in the SDN controller

will be the base for the design of a class of new re-routing algorithms able to guarantee deadline con-

straints and queue balancing without any modification of the OpenFlow specification, as well as, of Open-

Flow devices.

© 2016 Published by Elsevier B.V.

1

w

a

c

b

(

S

s

t

a

i

p

p

l

u

s

i

m

f

g

q

fi

o

a

t

e

t

i

o

n

q

h

1

. Introduction

Software Defined Networking (SDN) is revolutionizing the net-

orking industry by enabling programmability, easier management

nd faster innovation [1,2] . These benefits are made possible by its

entralized control plane architecture which allows the network to

e programmed and controlled by one central entity.

The SDN architecture is composed both of SDN enabled devices

switches/routers) 1 and of a central controller (SDN controller). An

DN device processes and delivers packets according to the rules

tored in its flow table (forwarding state), whereas the SDN con-

roller configures the forwarding state of each SDN device by using

 standard protocol called OpenFlow (OF) [2] . The SDN controller

s responsible also to build the virtual topology representing the

hysical topology. The virtual topology is used by the application
∗ Corresponding author. The work has been performed while M. Cello was em-

loyed at University of Genoa.

E-mail addresses: luca.boero@edu.unige.it (L. Boero), marco.cello@nokia-bell-

abs.com (M. Cello), chiara.garibotto@edu.unige.it (C. Garibotto), mario.marchese@

nige.it (M. Marchese), maurizio.mongelli@ieiit.cnr.it (M. Mongelli).
1 In the following we will use the terms: SDN device, OpenFlow device, OpenFlow

witch, interchangeably, even if the term “OpenFlows switch” or simply “switch”

ndicates an SDN enabled device in most SDN literature.

s

b

g

v

l

fi

u

ttp://dx.doi.org/10.1016/j.comnet.2016.06.025

389-1286/© 2016 Published by Elsevier B.V.
odules that run on top of the SDN controller to implement dif-

erent control logics and network functions (e.g. routing, traffic en-

ineering, firewall actions).

Currently the Quality of Service (QoS) management in OF is

uite limited: in each OF switch one or more queues can be con-

gured for each outgoing interface and used to map flow entries

n them. Flow entries mapped to a specific queue will be treated

ccording to the queue’s configuration in terms of service rate, but

he queue’s configuration takes place outside the OF protocol . For

xample, the queue’s service rate cannot be modified by OF.

Supposing that a flow is traversing a chain of queues from

he source to the destination node, and that the flow data rate

ncreases, a possible consequence is that queues increase their

ccupancy, and a bottleneck may be generated with consequent

etwork congestion. The impossibility to change the bottleneck

ueue’s service rate through real-time OF directives can lead to a

evere performance degradation for the flows traversing that queue

ecause, without a proper rate assignment, it is very difficult to

uarantee Quality of Service requirements to the flows [3] .

A possible solution to mitigate the performance degradation in-

olves the re-routing of the flows experiencing a violation of dead-

ine constraints (e.g. the flows that are totally received beyond the

xed time constraint) [4] on less congested paths or queues. The

nderlying idea is that, since we cannot change the service rate of

http://dx.doi.org/10.1016/j.comnet.2016.06.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.025&domain=pdf
mailto:luca.boero@edu.unige.it
mailto:marco.cello@nokia-bell-labs.com
mailto:chiara.garibotto@edu.unige.it
mailto:mario.marchese@unige.it
mailto:maurizio.mongelli@ieiit.cnr.it
http://dx.doi.org/10.1016/j.comnet.2016.06.025

162 L. Boero et al. / Computer Networks 106 (2016) 161–170

Table 1

Performance metrics of the traffic for 1-queue and 3-queues configurations.

Performance metric Queue configuration

1-queue 3-queue

BF - packet loss 25% 71 .16%

DF1 - percentage of flows matching the deadline 11 .43% 74 .29%

DF2 - percentage of flows matching the deadline 17 .39% 19 .57%

l

d

a

s

f

t

d

m

c

u

t

o

t

fi

P

m

m

l

p

s

T

s

s

u

p

p

S

c

i

c

p

o

c

t

O

b

O

s

g

t

3

t

t

T

g

i

o

S
the queues, we act on the ingress traffic, moving a subset of flows

on different paths or queues in case of need. In order to be 100%

compatible with current OF hardware, we impose no changes to

OF specifications and directives. Instead we propose to modify one

popular SDN controller: Beacon [5] . The proposed solution, BeaQoS ,

applied to a single SDN switch, is an extension of our previous

work presented in [6] . Our new updated controller will receive

statistics about queues, flows and ports from OF switches and will

compute an estimation of the flow rates and of the packet loss of

the queues. Based on customizable policies, BeaQoS will be able to

select a subset of flows experiencing congestion over the bottle-

neck queue and to re-route them on another and less congested

queue, so improving the switch performances. The action of flow

re-routing may be exploited not only for deadline management but

also for efficient queue load balancing. On the other hand load bal-

ancing is often seen as an action to prevent congestion and, con-

sequentially, to limit and delay performance detriment.

The remainder of this paper is structured as follows. We de-

scribe related works on this field in Section 2 . Concerning the main

contributions of the paper:

– We explain the motivations that lead to consider multi-queue

interfaces with variable service rate to support deadline man-

agement in Section 3 ;

– We describe the basic idea concerning the re-routing mecha-

nisms introduced in this paper in Section 4.1 , where we also

show how it can be usefully applied in case of multi-core ar-

chitectures and load balancing issues among queues;

– We describe the modifications of the Beacon controller required

to implement re-routing in Section 4.2 ;

– We propose five effective re-routing strategies in BeaQoS: two

of them aimed at improving deadline management and three

of them aimed at balancing the load among queues in a SDN

switch in Section 5 .

We show the performance analysis of our proposed algorithms

in Section 5 . We report a discussion about the obtained results to-

gether with the conclusions in Section 7 .

2. Related works

Despite traffic engineering (TE) approaches are often ruled by

MPLS-TE [7,8] , the ability of the SDN controller to receive (soft)

real-time information from SDN devices and to make decisions

based on a global view of the network, coupled with the ability of

“custom”-grained flow aggregation inside SDN devices, makes TE

one of the most interesting use cases for SDN networks.

Global load balancing algorithms are proposed in [9] that ad-

dresses load-balancing as an integral component of large cloud ser-

vices and explores ways to make load-balancing scalable, dynamic,

and flexible. Moreover [9] states that load-balancing should be a

network primitive, not an add-on, and presents a prototype dis-

tributed load-balancer based on this principle.

[10] , shows that the controller should exploit switch support

for wildcard rules for a more scalable solution that directs large

aggregates of client traffic to server replicas. [10] also presents al-

gorithms that compute concise wildcard rules that achieve a target

distribution of the traffic and automatically change load-balancing

policies without disrupting existing connections. Furthermore, the

authors implement these algorithms on top of the NOX OpenFlow

controller, evaluate their effectiveness, and propose avenues for

further research.

The work presented in [11] shows a system that re-configures

the network’s data plane to match current traffic demands by cen-

trally controlling the traffic that each service sends on a back-

bone connecting data-centres. [11] develops a novel technique that
everages a small amount of scratch capacity on links to apply up-

ates in a provably congestion free manner, without making any

ssumptions about the order and timing of updates at individual

witches. Further, to scale to large networks in the face of limited

orwarding table capacity, [11] greedily selects a small set of en-

ries that can satisfy current demands and updates this set without

isrupting traffic.

Reference [12] analyses a partially deployed SDN network (a

ix of SDN and non-SDN devices) and shows how to exploit the

entralized controller to get significant improvements in network

tilization as well as to reduce packet losses and delays. [12] shows

hat these improvements are possible even in cases where there is

nly a partial deployment of SDN capability in a network. The au-

hors formulate the SDN controller’s optimization problem for traf-

c engineering with partial deployment and propose a fast Fully

olynomial Time Approximation Schemes (FPTAS) to solve it.

This last problem is also tackled in [13] that introduces a traffic

anagement method to divide, or to “slice”, network resources to

atch user requirements. [13] presents an alternative to resort to

ow-level mechanisms such as Virtual LANs, or to interpose com-

licated hypervisors into the control plane, by introducing an ab-

traction that supports programming isolated slices of the network.

he semantics of slices ensures that the processing of packets on a

lice is independent of all other slices. They define their slice ab-

traction, develop algorithms to compile slices, and illustrate their

se by using examples. In addition, [13] describes a prototype im-

lementation and a tool to automatically verify formal isolation

roperties.

In our previous work [6] , we propose a solution based on

DN, which implements a software strategy to cope with non-

onformant traffic flows inside a class-based system. This approach

s therefore independent of the underlying hardware, as it is con-

eived to run as an algorithm inside the SDN controller. The pro-

osed strategy will manage non-conformant flows, based on a set

f statistic data gathered by a modified version of the Beacon

ontroller, in order to mitigate the quality degradation of flows

raversing the network.

In order to support traffic engineering in the SDN environment,

penFlow Management and Configuration Protocol (OF-Config) has

een proposed. OF-Config [14] is a protocol developed by the

pen Networking Foundation used to manage physical and virtual

witches in an OpenFlow environment. This tool gives network en-

ineers an overall view of the network and also provides the ability

o set policies and to manage traffic across devices.

. Motivations

Some approaches consider a single queue for each outgoing in-

erface. In order to support QoS mechanisms and traffic differen-

iation, it is common to configure multiple queues in advance [3] .

he importance of traffic differentiation is highlighted by the first

roup of simulations (Table 1) reported in the following.

Flow entries mapped to a specific queue will be treated accord-

ng to that queue’s configuration in terms of service rate. Most

f the previously mentioned approaches assumes the ability of

DN/OpenFlow to set the service rate of the queues in each SDN

L. Boero et al. / Computer Networks 106 (2016) 161–170 163

Table 2

Performance metrics of the traffic for fixed and variable service rate.

Performance metric Queue configuration

Fixed rate Variable rate

BF - packet loss 0% 0%

DF1 - percentage of flows matching the deadline 100% 100%

DF2 - percentage of flows matching the deadline 25% 100%

DF - percentage of flows matching the deadline 34 .78% 100%

Table 3

Traffic classes and their deadline requirements.

Traffic class Percentage of Deadline

Name Traffic descriptor overall traffic requirements

BF 50 − 80 kbit / s × 50 s 30% –

DF1 4 .5 Mbit/s × 1 s 55% deadline: 9 s

DF2 1 .5 Mbit/s × 1 s 15% deadline: 5 s

d

s

s

s

a

v

p

a

8

5

t

t

F

i

c

t

s

r

d

p

i

p

t

t

l

r

t

A

p

w

t

s

q

m

p

o

fl

d

Fig. 1. Congestion at one of the queue.

w

t

s

a

p

t
l
f

s

d

a

4

4

d

b

u

c

r

p

F

s

q

l

e

p

i

t

t

r

F

a

evice. This chance would be very helpful to improve the SDN

witch performance, as would be clear from the second group of

imulations (Table 2) reported below.

Table 1 shows the results of simulations we ran aimed at

howing how it is hard, without traffic differentiation, to guar-

ntee deadline requirements. During 120 s of simulation, an Open

Switch

2 s 1 receives a mix of traffic, generated with iperf , com-

osed of “Background flows” (BF) and “Deadline flows” (DF) 3 . BF

re CBR flows with a rate randomly chosen in the set {50, 60, 70,

0} kbit / s . DF are divided into two classes: DF1 and DF2. DF1 has a

 s deadline, while DF2 a 9 s constraint. The overall traffic descrip-

ors and requirements are defined in Table 3 .

We tested two configurations by using 125 generated flows. In

he first one s 1 has 1 queue on the outgoing interface (q 0) with a

IFO (First Input, First Output) service rate s q 0 = 3 Mbit/s, whereas

n the second one it has 3 queues, each of them dedicated to a spe-

ific traffic: q 0 for BF, q 1 for DF1 and q 2 for DF2. The service rate of

he queues (set in advance) are s q 0 = 300 kbit/s, s q 1 = 1 . 7 Mbit/s,

 q 2 = 1 Mbit/s. The QoS metrics considered here are the packet loss

ate in percentage for BF and the percentage of flows matching the

eadline for DFs as shown in Table 1 .

As one can note the 3-queue configuration consistently im-

roves the percentage of flows matching the deadline and penal-

zes the packet loss rate of BF. Setting the service rates of sim-

le queues differently, the performances will change but it is clear

hat traffic differentiation through multi-queues interfaces gives

he fundamental gears to manage deadline flows and to tune the

evel of performances of the network traffic.

Table 2 shows the results of the second set of simulations we

an aimed at showing how the power to change the service rate of

he queues can improve the deadline management performances.

s the previous simulation, s 1 is receiving a mix of traffic com-

osed of BF, DF1 and DF2. Again two configurations are tested

ith the same number of generated flows. In the first configura-

ion, s 1 has 3 queues with a pre-fixed service rate: s q 0 = 2 Mbit/s,

 q 1 = 4 Mbit/s and s q 2 = 4 Mbit/s, whereas in the second one,

 1 can grab the spare capacity from the other two when it needs

ore bandwidth: s q 1 is in the range [4 − 10] Mbit/s.

The variable rate configuration consistently improves the total

ercentage of flows that match the deadline, leading it up to 100%,
2 Open vSwitch (OVS) [15] is a production-quality open source implementation

f a virtual switch in Linux.
3 As said before, DF are the flows for which there is an associated deadline: the

ow is useful if, and only if, is completely received at the destination within the

eadline.

i

t

r

a

ithout any impact on BF packet loss. In Table 2 the label DF tags

he Deadline flows without distinction between DF1 and DF2.

Unfortunately, as highlighted in the introduction, current OF

pecification [16] is not able to configure queues’ service rate

nd delegates this task to an external dedicated configuration

rotocol: “Queue configuration takes place outside
he OpenFlow protocol, either through a command
ine tool or through an external dedicated con-
iguration protocol. ” ([17] , Section 7.3.5.10). As a con-

equence, this paper, even if applies multiple queues for traffic

ifferentiations, supposes queue’s service rate set and unchange-

ble in a SDN switch.

. Possible solutions and required Beacon modification

.1. General idea

Although the design and implementation of a new OpenFlow

irective able to configure the queues’ service rate would be the

est solution in terms of performances, this choice would come

p with a main drawback: it would be totally incompatible with

urrent OF switches that would not take any benefit from the di-

ective.

For this reason we propose an alternative solution totally com-

atible with current OF switches. The underlying idea is shown in

igs. 1 and 2 .

Let us suppose that, during the network operation, the OF

witch in Fig. 1 receives 5 flows that manages through 3 outgoing

ueues q 0 , q 1 and q 2 . Let us suppose that the orange flow (i.e. the

argest arrow) increases its data rate so that q 0 receives more pack-

ts than those it can handle. q 0 incoming rate is higher than the

re-configured service rate. In this situation, increasing the incom-

ng rate eventually leads to packet loss and to a severe reduction of

he quality experienced by the flows in q 0 . Being unable to change

he service rate of the queue, a possible solution involves the re-

outing of some flows arriving at q 0 to another queue (e.g. q 1 in

ig. 2) in order to reduce q 0 incoming rate. Re-routing mechanisms

ttempt to use the spare bandwidth unused by other queues.

Since we want to keep simple both OF switches and OF spec-

fication, we design and implement re-routing mechanisms inside

he SDN controller. Even if the idea is simple, the design of re-

outing mechanisms involves functionalities of the SDN controller

nd, in particular, the following features/requirements:

– The compatibility with early versions of OpenFlow (which is

obviously a must);

164 L. Boero et al. / Computer Networks 106 (2016) 161–170

Fig. 2. Re-routing of some flows.

Table 4

BeaQoS Statistics compared with OpenFlow 1.0 statistics.

Statistics available Statistics computed

in OpenFlow 1.0 by BeaQoS

Tx Bytes per Flow → Estimated Rate per Flow

Tx Bytes per Port → Estimated Rate per Port

Tx Bytes per Queue → Estimated Rate per Queue

FlowMatch

FlowActions

QueueID

⎫ ⎬

⎭

→ Flows per Queue

w

t

t

w

c

v

o

following section.
– The creation of a module able to handle statistics;

– The implementation of the proposed approaches;

– No primitives shall be modified with respect to the current

OpenFlow standard.

The idea of re-routing and the strategies proposed in this pa-

per can be exploited both for specific deadline management pur-

poses, and in the context of the optimal management of hardware

resources provided to common software routers. Software routers

can run on off-the-shelf general-purpose CPUs and commodity

hardware, rather than on expensive dedicated hardware. Commod-

ity hardware not only maintains a high level of programmabil-

ity and flexibility but is more cost-efficient than specialized hard-

ware solutions and network components. For this reason, soft-

ware routers are largely widespread [18] . On the other hand, it

has been proved that the CPU is the main bottleneck in a soft-

ware router. Recent advances propose to increase the packet pro-

cessing performance through parallel processing based on off-the-

shelf multi-core processors [19] . In more detail, current software

routers implement filters for multi-queue NICs (Network Interface

Controllers) used to address incoming packets to a certain queue

based on specific packet attributes. By these filters, NICs are able

to efficiently distribute the incoming packet processing workload

across multiple CPU cores. This also ensures that each packet of a

specific flow is served by the same CPU core so avoiding, for ex-

ample, packet reordering [20] .

Instead of using dedicated hardware filters provided by NICs we

propose a flexible solution based on the OpenFlow architecture.

Our approach consists in using an OF software controller which

can monitor incoming flows and has the intelligence to decide

the correct queueing strategy. We develop a series of control algo-

rithms able to re-arrange flows in order to make lighter the com-

putational burden of the CPU by equally distributing flows among

the available queues.

4.2. Implementation: BeaQoS

We chose Beacon [5] as SDN controller. Beacon is a multi-

threaded Java-based controller that relies on OSGi and Spring

frameworks and it is highly integrated into the Eclipse IDE. Any-

way, independently of the specific choice of the controller, our

modifications can be implemented in any controller. The structure

of the controller consists of a group of functions (called bundles)
ith dedicated functionalities. The main bundle we focused on is

he Routing one, which takes care of finding the correct path be-

ween the source and destination to forward packets. Moreover,

e created an ad-hoc bundle, called Statistics , to the purpose of

ollecting and processing the statistics of the reply messages pro-

ided by network switches. The principal proposed modifications

f Beacon are:

Statistics polling Beacon controller has been modified in order

to send statistic requests to the switches. We added a func-

tion that triggers the dispatch of statistic and feature request

messages with a polling interval (PI) configurable through an

external properties file. We also designed and implemented

a class dedicated to the creation of statistic request mes-

sages, such as ofp_flow_stats_request, ofp_port_stats_request,

ofp_queue_stats_request [21] , in order to obtain useful infor-

mation about the status of flows, ports and queues.

Statistics This module has two main functions: one is devoted

to the creation of the data structures needed to generate

a database of statistics related to the network nodes, the

other one is dedicated to implement the collection of data

extracted from the messages about statistics. The reply mes-

sages obtained from the network switches are the intro-

duced ofp_flow_stats, ofp_port_stats, ofp_queue_stats . In addi-

tion to the basic statistics that the OpenFlow protocol 1.0

makes available, we added specific functions to the con-

troller, which allow BeaQoS to exploit the collected data

in order to compute parameters useful to apply the cho-

sen strategy. The additional statistics computed by BeaQoS

are shown in Table 4 , compared with the ones available in

OpenFlow 1.0.

The main extracted feature is the Estimated Rate (ER) for

ports, queues, and flows. We computed the Estimated Rate

ER t at a given time instant as follows:

ER

t =

T B

t − T B

t−1

P I
(1)

in which t is the sampling instant, TB t are the transmit-

ted bytes at the current instant, T B t−1 are the transmitted

bytes at the previous sampling instant and PI represents the

polling interval in seconds. Obviously the quantity “transmit-

ted bytes” and, consequently, the expression in (1) , may be

applied to ports, queues, and flows. Another parameter we

extracted is the number of flows currently belonging to a

specific queue (Flows per Queue).

Routing This module has been modified so as to implement the

proposed algorithms. When a switch receives a new flow, it

contacts the controller in order to know where to forward

the traffic. When the controller has to assign each flow to a

specific queue, it checks a variable that identifies the algo-

rithm to run. BeaQoS performs a routine to select the cor-

rect queue based on the chosen strategy and then notifies

the node through the installation of a flow modification.

The proposed approaches are described in detail in the

L. Boero et al. / Computer Networks 106 (2016) 161–170 165

5

c

e

p

t

t

5

“

w

o

e

w

t

o

h

t

a

t

t

i

b

m

fl

w

t

e

f

m

o

(

a

Table 5

Queue configurations.

Queue ID Service rate Buffer size

q 0 0-3 Mbit/s 10 0 0 packets

q 1 2 Mbit/s 10 0 0 packets

q 2 1 Mbit/s 10 0 0 packets

Fig. 3. Percentage of flows that satisfy the deadline, computed with H = 100 .

M

c

s

B

i

b

q

t

i

v

i

i

D

t

c

5

a

a

r

i

f

fl

p

s

T

c

s

p

a

a
. Re-routing strategies analysis

In this section, we present two main scenarios in which we

ompare different proposed re-routing algorithms to find the most

fficient solution. The first scenario deals with the problem of the

riority flows that must be served within a specific deadline, as in-

roduced in Section 3 . The second one faces the issue of balancing

he load among different queues in a single SDN node.

.1. Deadline management scenario

In this scenario we consider both “Background flows” (BF) and

Deadline flows” (DF). As previously described, DF are flows for

hich there is an associated deadline: the flow is useful if, and

nly if, it completes within the deadline [4] . DF are of inter-

st in datacenter applications (e.g. web search, social networking)

here user requests need to be satisfied within a specified la-

ency target and when the time expires, responses, irrespective

f their completeness, are shipped out 4 . Moreover, online services

ave a partition-aggregate workflow, being user requests parti-

ioned among (multiple) layers of servers (workers) whose results

re then aggregated to form the response. The combination of la-

ency targets and partition-aggregate workflow has implications for

he traffic inside the datacenter. Specifically, for any network flow

nitiated by these workers, there is an associated deadline.

We propose and implement two schemes in order to provide a

asic support for deadline management inside a SDN network with

ixed traffic BF, DF1 (each flow with deadline 1) and DF2 (each

ow with deadline 2). To clarify the description of these approaches

e assume that all interfaces of each switch are configured with

hree queues: q 0 , q 1 , q 2 . q 0 is dedicated to BF, whereas the oth-

rs are used for DF1 and DF2, respectively. The schemes are the

ollowing:

Dedicated This scheme assigns each traffic class to a specific

queue of the considered switch port. Upon the arrival of a

new flow inside the switch, the routing engine of the Bea-

con controller decides which queue to choose based on the

traffic descriptor of the flow. BF are enqueued on q 0 , DF1 are

assigned to q 1 and DF2 are assigned to q 2 .

Deadline This scheme is triggered when the controller receives

a request from a switch on how to manage an upcoming

flow. The routing module checks the Type of Service field

5 :

BF are enqueued on q 0 , whereas for DF1 or DF2, the con-

troller chooses the less utilized queue q i ∗ . The utilization

of the queues is computed based on the following function

U (q i):

i ∗ = arg min

i =1 , 2
U (q i) ; U (q i) = s q i −

∑

k

target k · n k,q i
i = 1 , 2

(2)

being: s q i the service rate of q i , known a-priori and con-

figurable from an external properties file; k the index that

spans among the classes of service (here DF1 and DF2);

target k the rate we need to guarantee to the flow of class

k 6 ; n k,q i
the number of flows belonging to the class k and

assigned to q i .

The aim is to maximize the number of DF whose deadline is

atched, even at the expense of background flows, if necessary.
4 Today’s online services have service level agreements (SLAs) baked into their

peration [22–24] .
5 We choose the ToS field to differentiate DF1 and DF2 having in mind the DSCP

Diff Serv Code Point) bits in the ToS field, but other solutions can be implemented.
6 For example, a flow of class k with size of 100 kByte and a deadline of 10 s needs

 target k ≥ 10 kByte / s .

fl

p

fl

t

o

b
We carried out the performance analysis on a PC running

ininet (version 2.1.0) [25] . The scenario is composed of two hosts

onnected to a SDN switch. The chosen implementation of the

witch is Open vSwitch 2.0.2 [15] , managed by an instance of

eaQoS running on the same machine. Each port of the switch

s configured with 3 queues, q 0 , q 1 , q 2 . The rate assigned to each

uffer is shown in Table 5 . The overall service rate is 3 Mbit / s . The

ueue dedicated to BF has a variable service rate ranging from 0

o 3 Mbit / s : this implies that q 0 can be served only if the prior-

ty queues are not using the entire link bandwidth. Queue ser-

ice rates are configured through the Traffic Control (tc) module

n Linux Kernel.

The traffic used for these simulations, generated through the

perf tool, consists, as said above, of 3 types of flows, BF, DF1 and

F2 composed of the following percentages and features: 30% of

he overall traffic is BF, which is characterized by a random rate

hosen in the set {50, 60, 70, 80} kbit / s and a duration of 50 s ;

5% is DF1, generating data at 4.5 Mbit/s for 1 s and, undergoing

 deadline of 9 s ; and 15% is DF2 with 1.5 Mbit/s data rate for 1 s

nd with a deadline of 5 s. The summary of traffic descriptors and

equirements are reported in Table 3 , already used for the results

n Section 3 .

In this scenario we compare the performances of the two dif-

erent proposed solutions: Dedicated and Deadline.

We ran an emulation of 3 hours of duration composed of 30 0 0

ows structured into BF and DF flows as described above. We

resent the obtained values averaged over an Horizon (H) of con-

ecutive flows. Each averaged value is called Emulation Sample ID.

he metrics used to compare the proposed approaches are the per-

entage of Matched Deadline Flows (e.g. the percentage of flows

atisfying the deadline) and the Loss of Background Flows (i.e. the

ercentage of lost packets of BF flows). For what concerns Figs. 3

nd 4 , showing the Matched Deadline Flows, an Horizon H = 100

nd H = 250 , respectively, is applied taking into account only DF

ows. Figs. 5 and 6 , showing the Loss of Background Flows, ap-

ly again H = 100 and H = 250 , respectively, but involving only BF

ows.

Intuitively, large H values capture the steady state of the sys-

em and small H values present more measurement noise. Instead

f choosing a specific H or trying to capture a flat steady state

ehaviour, we decided to track the performances over fixed time

166 L. Boero et al. / Computer Networks 106 (2016) 161–170

Fig. 4. Percentage of flows that satisfy the deadline, computed with H = 250 .

Fig. 5. Percentage of lost packets for Background Flows, computed with H = 100 .

Fig. 6. Percentage of lost packets for Background Flows, computed with H = 250 .

5

p

q

s

o

s

d

t

a

t

(

p

t

t

g

r

i

o

c

t

o

q

t

i

a

d

s

a

t
horizons in order to obtain a more realistic approach, as discussed

in [26] and [27] . The results of these tests show that the Dead-

line scheme allows satisfying the time constraints of a much larger

number of DF than the Dedicated scheme. In practice, the Deadline

scheme is able to double, on average, the performance of the other

approach, referring to Matched Deadline Flows (Figs. 3 and 4). The

improvement of the number of DF flows matching the deadline is

obtained at the expense of BF traffic, which suffers from a much

higher packet loss than in the Dedicated scheme, as shown in

Figs. 5 and 6 .

In short independently of the H value, the Deadline technique

is better than the Dedicated one with respect to the percentage of

satisfied deadlines for DF flows, at the cost of increasing the loss

achieved on BF flows.
.2. Queue balancing scenario

As far as load balancing strategies are concerned, we pro-

ose three schemes aimed at equalizing the traffic burden in each

ueue. In order to better illustrate the operating principles of our

olutions, we assume a network scenario in which each interface

f each switch has four available queues, q 0 , q 1 , q 2 and q 3 . The

ervice rate of the outgoing interface is equally divided among the

ifferent queues. The proposed schemes are the following:

Min load This scheme consists in assigning the upcoming flow

to the least loaded queue. This task is performed by the

routing module of the BeaQoS controller. When a new flow

reaches a SDN switch the controller checks the estimated

rate (computed as in (1)) of the queues belonging to the

considered output port and selects the one which has the

minimum value.

If we think to the rate of the flows as numbers, it is possible

o model the load balancing problem among the available queues

s a problem of partitioning a given set of numbers into a collec-

ion of subsets so that the sums of the numbers in each subset

i.e. the queues of the switches) are as close as possible [28] . This

roblem is already known in literature as Multi-Way Number Parti-

ioning and it is NP-complete. For the sake of simplicity we choose

o implement an algorithm, which we call Multiway, based on the

reedy heuristic described below.

Multiway In this scheme all the flows are queued into q 0 at the

beginning, then the controller periodically runs a scheme

that sorts the flows in decreasing order based on the com-

puted Estimated Rates (ER) in (1) and assigns each flow,

analysed by following the established ER decreasing order,

to the queue with the lower utilization so far, in order to

equalize the load among the queues.

N-migrations When the number of flows is huge, the Multi-

way approach tends to become computationally heavy since

it has to analyse and possibly move all the flows traversing

the interface. For this reason we introduced the N-Migration

strategy, where the number of flow migrations is limited to

N . The algorithm runs on scheduled times and iterates N

times a routine which selects a flow from the most loaded

queue and re-routes it in the least loaded one. The flow se-

lected by the strategy is the one which assures the best load

equalization among the queues. This selection is performed

evaluating all the possible outcomes through a simple simu-

lation of re-routing.

Although these strategies may seem similar, the performance

esults are different. Tests about Queue Balancing use a very sim-

lar Mininet topology as described for the Deadline scenario. The

verall rate availability is 4 Mbit/s. The main difference is in the

onfiguration of the queues inside the OpenFlow switch: each in-

erface of the switch has four queues, q 0 , q 1 , q 2 , q 3 and the rate

f the outgoing interface is equally divided among the different

ueues such as each one has 1 Mbit/s available.

The traffic used in these simulations was generated by using

he iperf tool and consisted of flows with a rate randomly chosen

n the set {50, 60, 70, 80, 90, 100} kbit/s. Flow duration is 50 s .

The network was tested with increasing workloads: 100, 125

nd 150 flows running with different seeds.

To better analyse the results, we introduce a performance in-

ex that provides a measure of accuracy of our algorithm with re-

pect to the optimal solution, which ideally allows getting the ex-

ct amount of traffic in every queue to get load balancing. We call

his parameter index and we compute it at each time instant t as:

L. Boero et al. / Computer Networks 106 (2016) 161–170 167

Fig. 7. Queue balancing performances with 100 flows.

Fig. 8. Queue balancing performances with 125 flows.

Fig. 9. Queue balancing performances with 150 flows.

i

w

t

i

i

i

s

t

a

F

s

a

b

F

s

t

c

M

t

i

a

f

s

s

M

M

t

o

e

w

b

6

6

s

t

a

t

fl

f

o

o

t

a

p

i

C

n

i

l

s

d

m

n

6

g

c

m

s

r

a

g

c

s

e

i

T
ndex t =

∑

i

(
r t q i − r

t
)2

4

, t = 0 , 1 , . . . (3)

here r t q i is the measured output rate of queue q i and r t is the op-

imal queue rate, both evaluated at time instant t . In other words,

ndex t is a measure of the distance between our solution and the

deal one.

The following plots show the Cumulative Frequency (CF) of

ndex t . CF is defined as the number of occurrences over the total

amples in which the index t is below a certain threshold (index −
h). Figs. 7–9 show CF versus index − th, for Min Load, Multiway

nd N-Migrations in case of 100, 125 and 150 flows, respectively.

or what concerns the N-Migrations approach, the N parameter is

et to 1 for all simulations.

The results highlight that, in all examined cases, Min Load

nd Multiway schemes show a very satisfying behaviour and have

etter performances with respect to the N-Migrations approach.

or example, when we consider 100 flows inside the network, as

hown in Fig. 7 , we can say that, in 90% of cases, the distance be-

ween our solution and the ideal one doesn’t exceed 50 0 0 for what
oncerns Min Load and Multiway strategies. On the contrary, N-

igrations accuracy curve has a less steep trend than the alterna-

ive solutions: the value of index for this approach is below 50 0 0

n 50% of cases. In particular it is important to note that Min Load

nd Multiway behaviours are very close to the Ideal one (CF is 1

or any index − th value, including 0) and overlap it for a relatively

mall index − th .

Also the simulations involving 125 and 150 flows confirm the

ame behaviour, as shown in Figs. 8 and 9 .

Concerning N-Migrations: the results show that the N-

igrations approach cannot achieve the same performances of the

in Load and Multiway. This is due to the choice of the N parame-

er, which is the key of the algorithm. This parameter can be set in

rder to tune the performances of this approach: as the N param-

ter grows, the behaviour of the algorithm approaches the Multi-

ay scheme. The choice of the N parameter leads to a trade-off

etween performance and computational complexity.

. Considerations

.1. Scaling performances

Concerning statistics (see Table 4) acquisition: the types of mes-

ages sent by the controller are flow, queue and port requests

hat are used to gather information about port rates, queue rates

nd individual flow statistics. The controller receives three statis-

ic replies, one for ports, one for queues and one dedicated to all

ows traversing the OpenFlow switch in a given instant.

Since the maximum information sent through the Ethernet

rame is 1500 byte, each flow statistics reply message can report

nly the information about 10 flows. For this reason the number

f flow statistic packets in the case of f flows is � f /10 � . Given N

he number of switches composing the network and considering

nother two packets for port and queue statistics, the number of

ackets p that the controller must process at every polling interval

s

p =

(⌈

f

10

⌉

+ 2

)
· N (4)

onsidering a significant number of flows f and switches N , the

umber of packets p received by the controller can be large. This

s the price of a fine-grained control of an SDN network at flow-

evel (IntServ). The number of p can be reduced by using the flows

tatistics for a small number of “aggregate” flows. This could re-

uce the fine-grained control but relieves the controller from the

anagement of a large number of packets.

A performance analysis with a large scale scenario will be the

ext step of our work in this topic.

.2. Switch coordination

Even if in this paper we show the results by using a sin-

le OpenFlow switch in the network, it is possible to extend the

oncept across multiple SDN devices. The routing module imple-

ented in the BeaQoS controller can manage more then one single

witch. For each switch the controller computes all the needed pa-

ameters in order to provide the best behaviour, given the chosen

lgorithm. In order to extend this concept to the entire network,

iven a specific path to the destination, it would be possible to

ompute the optimal queue q i ∗ for each switch belonging to the

pecific path.

Alternatively, since the controller BeaQoS has the view of the

ntire network, another possible solution is to examine all exist-

ng paths between source and destination for the considered flow.

he controller could then compute the best path for the specific

168 L. Boero et al. / Computer Networks 106 (2016) 161–170

Fig. 10. Timing performances in queue balancing scenario.

t

c

R

flow and finally decide the optimal queue q i ∗ for all the switches

belonging to the selected path.

6.3. Timing performances and overheads in queue balancing scenario

In queue balancing scenario timing performances are essen-

tial to guarantee an “almost” instantaneous load balance among

queues in each switch. The main difficulty of this approach is due

to the remote nature of the actions of the SDN controller that

acts as if the actions were internal switch functionalities. The time

elapsing from the load imbalance event at the switch and the new

queue balance (queue balance delay) can be expressed as the sum

of several components, as depicted in Fig. 10 .

All our tests are performed with a relatively small number of

flows. This allows the controller to manage per flow performances.

Considering the Multiway algorithm, the controller can reorder the

total amount of flows traversing an SDN switch in a time of the

order of milliseconds. Moreover, considering that the controller is

connected with the switches using an out of band connection, the

time needed to deliver the flow modifications is negligible.

In a large scale scenario with a huge number of flows, it is pos-

sible to aggregate flows, reducing the number of sent flow stats

and the computation time of the Multiway algorithm.

7. Conclusions

The impossibility to configure the service rate of the queues

in a OpenFlow switch through an OF directive is a limitation that

could reduce the quality management capabilities in an SDN net-

work but it is a fact for now.

In this paper, exploiting the re-routing mechanism, we pro-

pose a method able to provide a basic deadline management sup-

port and an efficient queue balancing without any modification

of OpenFlow specifications and switches. We present BeaQoS, an

updated version of the Beacon controller able to receive statis-

tics from OpenFlow switches, compute more complex statistics and

decide the best queue re-routing strategy. We show the results

obtained in performance tests in which we compare alternative

Deadline Management approaches and Queue Balancing solutions.

Our cases of study show that the proposed solutions allow getting

satisfying results when applied to the current OpenFlow environ-

ment.

Future developments will be devoted to the scalability tests of

our solutions and to the study of more complex queue manage-

ment schemes that could lead to further improvements in per-

formances. We also plan to develop an extension of our internal

re-routing approach for the computation of alternative paths be-
ween the source and destination, in order to reduce the network

ongestion.

eferences

[1] M. Casado , M.J. Freedman , J. Pettit , J. Luo , N. McKeown , S. Shenker , Ethane:

Taking control of the enterprise, in: Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, in: SIGCOMM ’07, 2007, pp. 11–12 .
[2] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,

S. Shenker , J. Turner , Openflow: enabling innovation in campus networks, SIG-

COMM Comput. Commun. Rev. 38 (2) (2008) 69–74 .
[3] M. Marchese , QoS Over Heterogeneous Networks, Wiley Publishing, 2007 .

[4] C. Wilson , H. Ballani , T. Karagiannis , A. Rowtron , Better never than late: meet-
ing deadlines in datacenter networks, in: Proceedings of the ACM SIGCOMM

2011 Conference, in: SIGCOMM ’11, 2011, pp. 50–61 .
[5] D. Erickson , The Beacon Openflow Controller, in: Proceedings of the Second

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, in:

HotSDN ’13, 2013, pp. 13–18 .
[6] L. Boero , M. Cello , C. Garibotto , M. Marchese , M. Mongelli , Management of

non-conformant traffic in openflow environments, in: Performance Evaluation
of Computer and Telecommunication Systems (SPECTS), 2015 International

Symposium on, IEEE, 2015, pp. 1–6 .
[7] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, S. G, Rsvp-te: extensions to

rsvp for lsp tunnels, 2001, (RFC 3209).

[8] D. Applegate , M. Thorup , Load optimal mpls routing with n + m labels, in:
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer

and Communications. IEEE Societies, 1, 2003, pp. 555–565 .
[9] N. Handigol , S. Seetharaman , M. Flajslik , R. Johari , N. McKeown , Aster ∗x: load-

-balancing as a network primitive, in: Plenary Demo, 9th GENI Engineering
Conference, in: 9th GENI, 2010 .

[10] R. Wang , D. Butnariu , J. Rexford , Openflow-based server load balancing gone

wild, in: Proceedings of the 11th USENIX Conference on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services, in: Hot-ICE’11,

2011 . 12–12
[11] C.-Y. Hong , S. Kandula , R. Mahajan , M. Zhang , V. Gill , M. Nanduri , R. Watten-

hofer , Achieving high utilization with software-driven wan, in: Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, in: SIGCOMM ’13, 2013,

pp. 15–26 .

[12] S. Agarwal , M. Kodialam , T. Lakshman , Traffic engineering in software defined
networks, in: INFOCOM, 2013 Proceedings IEEE, 2013, pp. 2211–2219 .

[13] S. Gutz , A. Story , C. Schlesinger , N. Foster , Splendid isolation: a slice abstraction
for software-defined networks, in: Proceedings of the First Workshop on Hot

Topics in Software Defined Networks, in: HotSDN ’12, 2012, pp. 79–84 .
[14] OpenFlow Management and Configuration Protocol, Open Networking Foun-

dation, 2014 https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf .
[15] Open vSwitch, 2014, (http://openvswitch.org/).

[16] OpenFlow Switch Specification - version 1.5.0, 2015, (https://
www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf).
[17] Openflow switch specification - version 1.4.0, 2013, (https://

www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-spec-v1.4.0.pdf).

[18] M. Dobrescu , N. Egi , K. Argyraki , B. Chun , K. Fall , G. Iannaccone , A. Knies ,

M. Manesh , S. Ratnasamy , Routebricks: exploiting parallelism to scale software
routers, ACM Symposium on Operating Systems Principles (SOSP), 2009 .

[19] T. Meyer, D. Raumer, F. Wohlfart, B. Wolfinger, G. Carle, Validated model-based
performance prediction of multi-core software routers, Praxis der Informa-

tionsverarbeitung und Kommunikation (PIK), pp. 1–12.

http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0012
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
http://openvswitch.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0017

L. Boero et al. / Computer Networks 106 (2016) 161–170 169

[

[

[

[

[

[

[
20] T. Meyer , D. Raumer , F. Wohlfart , B. Wolfinger , G. Carle , Low latency packet
processing in software routers, in: Performance Evaluation of Computer

and Telecommunication Systems (SPECTS 2014), International Symposium on,
2014b, pp. 556–563 .

[21] OpenFlow Switch Specification - version 1.0.0, 2009, (https://
www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.0.0.pdf).
22] G. DeCandia , D. Hastorun , M. Jampani , G. Kakulapati , A . Lakshman , A . Pilchin ,

S. Sivasubramanian , P. Vosshall , W. Vogels , Dynamo: Amazon’s highly available

key-value store, SIGOPS Oper. Syst. Rev. 41 (6) (2007) .
23] T. Hoff, 10 ebay secrets for planet wide scaling, 2009 . (http://highscalability.

com/blog/2009/11/17/10- ebay- secrets- for- planet- wide- scaling.html)
24] W. Vogels, Performance and scalability, 2009 http://www.allthingsdistributed.
com/2006/04/performance _ and _ scalability.html .

25] N. Handigol , B. Heller , V. Jeyakumar , B. Lantz , N. McKeown , Reproducible net-
work experiments using container-based emulation, in: Proceedings of the 8th

International Conference on Emerging Networking Experiments and Technolo-
gies, in: CoNEXT ’12, ACM, New York, NY, USA, 2012, pp. 253–264 .

26] C.G. Cassandras , Y. Wardi , B. Melamed , G. Sun , C.G. Panayiotou , Perturbation
analysis for online control and optimization of stochastic fluid models, IEEE

Trans. Autom. Control 47 (8) (2002) 1234–1248 .

[27] M. Cello , M. Marchese , M. Mongelli , On the qos estimation in an openflow
network: The packet loss case, IEEE Commun. Lett. 20 (3) (2016) 554–557 .

28] R.E. Korf , Multi-way number partitioning, in: International Joint Conferences
on Artificial Intelligence, Citeseer, 2009, pp. 538–543 .

http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0018
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0020
http://highscalability.com/blog/2009/11/17/10-ebay-secrets-for-planet-wide-scaling.html
http://www.allthingsdistributed.com/2006/04/performance_and_scalability.html
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30205-5/sbref0026

170 L. Boero et al. / Computer Networks 106 (2016) 161–170

got his Bachelor Degree in Telecommunication Engineering at the University of Genoa; in
ocessing and Telecommunication Networks with a thesis on Quality of Service in Software

tudent at the University of Genoa. His main research activities concern networking and

“Laurea Magistrale” (M.Sc.) degree cum laude and his Ph.D in 2008 and 2012, respectively

worked as Post-doc research fellow at University of Genoa with a fellowship funded by
ow at Polytechnic Institute of New York University and Visiting Research Fellow at New

rch fellow at Nokia Bell Labs in Dublin, Ireland. He is a researcher on networking with al-
rojects funded by national industries, the European Community and the European Space

ulation, Linux-based emulation of telecommunication networks and Linux administra-

ing international journals, conferences and patents. His main research activities concern:
 Control; Routing and Congestion Control in Delay Tolerant Networks; Software Defined

2012 she got her Bachelor Degree in Telecommunication Engineering at the University

timedia Signal Processing and Telecommunication Networks with a thesis on Quality of
15 she is a Ph.D student at the University of Genoa. Her main research activities concern

 degree with honors from the University of Genoa in 1992 and the PhD in July 1997.
m for Telecommunications (CNIT). Associate Professor at the University of Genoa from

n Full Professor at the same University. He researched at the German Aerospace Center

e founder and head of the Laboratory “Satellite Communications and Networking”. He
ment of many research projects. He got 4 patents. He has published over 280 scientific

rticles in international journals and 13 book chapters. He has been the Coordinator of the
munication Engineering” since 2013 . He was “Chair” (20 06–20 08), “Vice-Chair” (20 04–

Space Communications Technical Committee” of ”IEEE ComSoc”. He is the winner of the
rvice Award” in 2008 and of numerous “Best Paper Award”. His main research interests

ications networks, quality of service over heterogeneous networks and applications for

Computer Engineering at the University of Genoa (UniGe) in 2004. His PhD was funded
h Selex and the CNIT from 2001 to 2010. During the PhD and in the subsequent years,

 Selex. From 2007 to 2008, he coordinated a joint laboratory between UniGe and Selex,
 technical coordinator of a research project concerning satellite emulator systems, funded

ing on the project at the German Aerospace Centre in Munich, Germany. He is now a
lecommunication Engineering of the Italian National Research Council. He is a co-author

ls, conferences and patents. His main research activity concerns resource allocation and

learning and cybersecurity.
Luca Boero was born in Genoa, Italy in 1989. In 2012 he
2015 he achieved a Master Degree in Multimedia Signal Pr

Defined Networking. From November 2015 he is a Ph.D s

SDN.

Marco Cello was born in Savona, Italy in 1983. He got his

both at the University of Genoa. In 2012, 2014 and 2015
Fondazione Carige. In 2013 he was Post-Doc research fell

York University Abu Dhabi. He is currently Post-Doc resea
most 8 years of experience, including managing research p

Agency (ESA). He has strong expertise in software for sim

tion. He is a co-author of over 20 scientific works, includ
Network Modelling/Teletraffic Engineering; Call Admission

Networking.

Chiara Garibotto was born in Chiavari, Italy in 1985. In

of Genoa; in 2015 she achieved a Master Degree in Mul
Service in Software Defined Networks. From November 20

networking and signal processing.

Mario Marchese was born in Genoa in 1967. He got his
From 1999 to 2005 he worked at the National Consortiu

2005 to January 2016, since February 1, 2016 he has bee

(DLR), as a Visiting Professor / Guest Scientist. He is th
coordinated the technical-scientific and financial manage

papers including 1 international book, 2 edited books, 77 a
PhD in ”Science and Technology for Electronic and Telecom

2006) and “Secretary” (2002–2004) of the “Satellite and
IEEE ComSoc “Satellite Communications Distinguished Se

concern: space, satellite and heterogeneous telecommun
smartphones.

Maurizio Mongelli got his PhD degree in Electronic and
by Selex Communications SpA (Selex). He worked for bot

he worked on quality of service for military networks for
dedicated to Ethernet resilience. He was recently the CNIT

by the European Space Agency; he spent 3 months work
researcher at the Institute of Electronics, Computer and Te

of over 70 scientific works, including international journa

optimization algorithms for telecommunication, machine

	BeaQoS: Load balancing and deadline management of queues in an OpenFlow SDN switch
	1 Introduction
	2 Related works
	3 Motivations
	4 Possible solutions and required Beacon modification
	4.1 General idea
	4.2 Implementation: BeaQoS

	5 Re-routing strategies analysis
	5.1 Deadline management scenario
	5.2 Queue balancing scenario

	6 Considerations
	6.1 Scaling performances
	6.2 Switch coordination
	6.3 Timing performances and overheads in queue balancing scenario

	7 Conclusions
	 References

