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A B S T R A C T

This paper proposes a new approach to diagnose broken rotor bar failure in a line start-permanent magnet
synchronous motor (LS-PMSM) using random forests. The transient current signal during the motor startup was
acquired from a healthy motor and a faulty motor with a broken rotor bar fault. We extracted 13 statistical time
domain features from the startup transient current signal, and used these features to train and test a random
forest to determine whether the motor was operating under normal or faulty conditions. For feature selection, we
used the feature importances from the random forest to reduce the number of features to two features. The
results showed that the random forest classifies the motor condition as healthy or faulty with an accuracy of
98.8% using all features and with an accuracy of 98.4% by using only the mean-index and impulsion features.
The performance of the random forest was compared with a decision tree, Naïve Bayes classifier, logistic re-
gression, linear ridge, and a support vector machine, with the random forest consistently having a higher ac-
curacy than the other algorithms. The proposed approach can be used in industry for online monitoring and fault
diagnostic of LS-PMSM motors and the results can be helpful for the establishment of preventive maintenance
plans in factories.

1. Introduction

Electrical motors convert electricity to mechanical energy. They
account for two thirds of the total electricity use in industrial sites [1].
As a consequence, electrical machine manufacturers continuously strive
to reduce the amount of energy used by motors. The standard IEC/EN
60034-30:2008 proposes IE4 as the highest efficiency for motors [2]. A
LS-PMSM consists of a stator and a hybrid rotor. The rotor is comprised
of an electricity conducting squirrel-cage and pairs of permanent
magnet poles. The efficiency of LS-PMSMs stems from the combination
of elements from permanent magnet synchronous motors and induction
motors. The LS-PMSM provides (1) high efficiency, similar to perma-
nent magnet synchronous motors, and (2) high starting torque, similar
to induction motors [3].

Failures in electrical motors are common and difficult to prevent
because motors are generally operated in industrial sites with different
types of stress causing failures in various motor parts [4]. This has led
to research on methods for early detection of failure in motors, to
prevent motor inefficiencies and motor shutdown. In particular, rotor

faults are significant because they exacerbate failures in other parts of
the motor [5]. Various sensing techniques have been developed for
broken rotor bar detection in electrical motors [5]. For instance, motor
current signature analysis (MCSA) is a widely used technique due to its
low cost and non-invasive nature [6]. In MCSA, the steady state current
of a running motor is collected and recorded. From the recorded signal,
features are extracted from the time domain, frequency domain, or
time-frequency domain. These features are then used to make a diag-
nosis of the motor.

Fault analysis in induction motors has been widely applied. MCSA
has been used to analyze faults in induction motors, such as rotor faults,
bearing faults, eccentricity, misalignment, and stator faults [7–11]. Si-
milar techniques have also been used to analyze vibration [12–16] and
acoustic [17] signals of induction motors. The limitation of prior work
is that most fault analysis has been applied to induction motors, elec-
trical motors, fans, and gear boxes [7–17]. Yet, fault analysis in LS-
PMSMs has been limited to a smaller set of faults, such as rotor faults,
static eccentricity faults, and demagnetization [18–21]. Fault analysis
in LS-PMSMs also suffers from a number of shortcomings: (1) the use of
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mathematical and simulated models to analyze faults, as opposed to
using an LS-PMSM machine to collect data for fault detection; (2) the
use of steady-state current for fault analysis; and (3) lack of machine
learning algorithms for fault detection.

This paper makes three contributions. First, we used an LS-PMSM
machine to collect current data while subjecting the motor to different
loads. The rotor faults in our LS-PMSM machine were created by phy-
sically damaging the rotors of the LS-PMSM. We also analyzed the LS-
PMSM starting with an initial load, as opposed to introducing a load
after the motor had reached steady state, which is the common practice
in prior work [7–11].

Second, we analyzed the transient current from when the motor is
started. That is, we started the motor from standstill and waited for the
motor to reach steady state, with the current from this transient period
used for our analysis. Prior research uses the current from the steady
state for fault analysis [7–11]. Finally, our third contribution is that our
work is the first to apply machine learning for rotor fault detection in
LS-PMSMs. We used random forests for the detection of rotor faults, and
assessed the effectiveness of random forests by comparing with a de-
cision tree, a Naïve Bayes classifier, logistic regression, linear ridge, and
a support vector machine. To train these machine learning algorithms,
we extracted thirteen time domain features from the transient current
signal of the LS-PMSM, with the selection of the features based on prior
work [22,23]. While machine learning methods have been used for
fault detection in induction motors [7–11], to the best of our knowledge
this is the first work to present fault analysis in LS-PMSMs by comparing
various machine learning algorithms and using features extracted from
the transient current signal to train and test these algorithms.

2. Fault detection with machine learning

A random forest is a machine learning algorithm consisting of a
number of independent decision trees [24]. A decision tree classifies an
instance by testing attributes of the instance at each node of the tree
[25]. Each node tests a particular attribute, with the leaves of the tree
representing the output labels. Moving down a particular branch of a
tree tests particular attributes at each node in order to arrive to an
output label. A decision tree is typically built following a greedy ap-
proach, with the attribute/feature that results in the best split of the
training data being used for the root node, and subsequently the attri-
butes/features that result in the next best splits being used in the
children nodes.

In contrast to a decision tree, a random forest uses bagging to build
the decision trees in the forest [24]. In bagging, T bootstrap sets are
made by sampling with replacement N training examples from the
training set, with T indicating the number of trees in the forest. Only 2/
3 of each bootstrap set are used to build each tree, with the remaining
1/3, referred to as the out-of-bag data, used to get an estimate of the
classification error of each tree. Fig. 1 illustrates the process of building
a random forest with T trees.

In a typical decision tree, the greedy approach to building the tree
can result in cases where the weaker features are not used at all. A
random forest addresses this by choosing the best split in each node
from a random subset of all the available features [24]. The random
feature subset used for determining best node splits allows the weaker
features to be represented in the random forest. Trees are grown to
maximum length and without pruning to get low bias. Low correlation
between the trees in the random forest is achieved by randomization as
a result of the bootstrap samples and the random selection of features at
each split [26]. Random forests have performed well in applications of
fault diagnosis in rotating machinery [10,24].

Once the random forest has been built, an instance (x) is classified
by passing the instance to each decision tree in the random forest
(Fig. 2). Each decision tree classifies the instance by following a par-
ticular branch of the tree depending on the outcome from each node.
The output of the random forest is then decided by taking the majority

of the outputs from each tree. That is, the output of each tree is con-
sidered a vote, with the majority vote determining the output of the
random forest.

Random forests provide a way to perform feature selection by using

Fig. 1. Building a random forest with bagging.

Fig. 2. Classifying an instance from the test set by passing the instance to each tree in the
forest, and combining the outputs from all the trees using majority vote.
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the importance of each feature derived while building the decision trees
[24]. Every non-leaf node in a decision tree is a decision node which
tests a single attribute, and based on the decision splits the data.
Averaging the impurity decrease for each feature over all the trees in
the random forest results in a score, this yields the importance for each
feature. We used feature importances to reduce the number of features
from 13 features to two features, as further described below.

Random forests have been used for fault monitoring and diagnosis
of induction motors and gear boxes, but not for LS-PMSMs. Niu et al.
collected data from 21 sensors to detect vibration, current, voltage, and
flux signals from an induction motor [7,8]. They extracted features
from the time and frequency domains, and compared the performance
of support vector machines, linear discriminant analysis, k nearest
neighbors, random forests, and the adaptive resonance theory-Kohonen
neural network, with random forests performing the best. In [9,10],
random forests was used for fault detection, with the number of trees
and the number of features selected at each node split optimized by a
genetic algorithm. Karabadji et al. used the Weka machine learning
library to compare random forests with various types of decision trees
on the vibration signals of an industrial fan connected to an electrical
motor [12,13]. They also used a genetic algorithm to optimize the type
of tree to use and the choice of training and validation sets. In [17],
Pandya et al. used acoustic signals for rolling element fault detection.
They extracted features using Empirical Mode Decomposition, with
modified k nearest neighbors outperforming random forests. Seera et al.
proposed a hybrid model combining a Fuzzy Min-Max neural network
(FMM) and a random forest [11]. They compared their hybrid model
with FMM, a CART decision tree, and a hybrid FMM-CART ensemble.
Cerrada et al. used random forests for multi-class fault diagnosis in spur
gearboxes, with a genetic algorithm used to select the best subset of
features out of 359 features in order to maximize diagnosis accuracy
[14].

Our work is the first to use the transient start up current for fault
detection. This is in contrast to prior work which has used the steady
state current for fault analysis [7–11]. In addition, all applications of
random forests to fault detection have been limited to induction motors
and they have not been applied to LS-PMSMs. The type of electrical
motor has a significant influence on fault detection of the motor due to
the differences in structure [18]. Thus, the fault monitoring from in-
duction motors cannot be generalized to LS-PMSMs due to the differ-
ences in these two types of motors.

3. Line start permanent magnet synchronous motors

An important obstacle for ordinary PMSMs is that they need an
inverter for starting, which is not economical for many single speed
applications. The squirrel-cage equipped permanent magnet motor-the
LS-PMSM-provides a high efficiency motor with high starting cap-
ability, but without the need of a drive system [3,27]. LS-PMSMs can
now reach super premium efficiency levels [28]. The structure of LS-
PMSM comprises (1) a single or three-phase stator similar to an in-
duction motor and (2) a hybrid rotor containing conductor bars and
permanent magnets. The squirrel-cage bars in an electrical machine
produce adequate high starting torque when the motor is run from
standstill. Similar to asynchronous motors, squirrel-cage bars in LS-
PMSM develop the startup performance during motor run up by en-
abling the rotor to have direct-on-line movement. When the load on the
motor is unbalanced or the rotation speed is fluctuated, the squirrel-
cage bars lessen the counter-rotating fields of the air gap, which
otherwise would lead to significant losses [29].

Fig. 3 depicts the cross-section of one pole of a three-phase, four
pole LS-PMSM. The rotor bar produces the starting torque as a result of
the induction current in the bars establishing an electromagnetic field,
which interacts with the rotatory field and subsequently pulls the motor
toward the synchronism. Despite the induced current, the copper loss in
the bars is negligible because of the synchronous operation.

Broken rotor bar is a major fault in squirrel cage motors. The pre-
sence of any damage in the rotor bar brings about secondary failures in
the motor, leading to serious malfunctions of the motor. Once a rotor
bar breaks, the condition of the neighboring bars also deteriorates over
time due to the increased stress. Moreover, any defect in the bar in-
fluences the flux distribution. Thus, our work focuses on the detection
of broken rotor bar faults.

Our work is most closely related to the work in [29,30]. In [30],
Merjou et al. present broken rotor bar fault detection in LS-PMSMs, but
their results are obtained from modeling with a simulation software
using FEM at healthy condition and under fault. Merjou et al. do use
transient current signals for their analysis, but these transient current
signals are part of the simulation and not obtained from an actual LS-
PMSM machine. Their analysis is limited to analyzing the current
spectrum in the time domain by extracting statistical features. In [31],
the Hilbert transform was used to extract the envelope of the current
signal. From the envelope, time domain features were extracted, such as
mean-index, RMS, skewness, kurtosis, among others. We improve on
the work by Merjou et al. by conducting rotor bar fault detection on an
LS-PMSM machine, whereas in [30,31] a software simulation is used for
the fault analysis. We also take the additional step of including a ma-
chine learning algorithm trained with features from a healthy motor
and a motor having a broken rotor bar. No machine learning method is
presented in [30,31].

The remaining prior fault detection in LS-PMSMs includes eccen-
tricity faults and demagnetization. In [18], Karami et al. analyze the
eccentricity fault during the steady state operation of an LS-PMSM
motor. The analysis is done using a software simulation of a three-phase
LS-PMSM. Their work also uses analysis on the frequency domain using
power spectral density (PSD) analysis. In [27], the irreversible de-
magnetization of an LS-PMSM is analyzed using transient analysis and
the two-dimensional finite-element method. The analysis and results
are based on a model, and not a physical LS-PMSM. In [21], the two-
dimensional time-stepping finite element method is used to analyze the
transient performance of a LS-PMSM simulated model. In [32], Lu et al.
examined the behavior of an LS-PMSM during demagnetization condi-
tion along with the causes leading to the demagnetization. While a LS-
PMSM machine is used to gather parameters and to understand the
performance of the machine, the actual analysis is done on a mathe-
matical model of the machine. Lu et al. were also one of the first to
introduce machine learning, specifically a neural network, to detect
demagnetization in LS-PMSM [32]. In [33–35], demagnetization in LS-
PMSMs is also analyzed by using a simulation model.

In contrast to prior work, we used an LS-PMSM machine to collect
current data for fault analysis, whereas prior work has solely used
software simulation of LS-PMSMs. We also used transient current signal
for our fault detection, as opposed to using the steady-state current.
Lastly, prior fault analysis has studied demagnetization, whereas we

Fig. 3. The structure of three phase LS-PMSM (Four Pole).
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focus on rotor faults.

4. Fault detection algorithm

Fig. 4 presents a flowchart of the fault detection method applied in
this research. First, the test workbench was set with the LS-PMSM
having two different conditions: (1) healthy and (2) faulty—one broken
rotor bar. The stator current signal was collected during the motor
startup using a Hall-Effect current sensor. Next, the acquired current
signals were preprocessed by truncating the data to the first 40 periods
of the current signal. The data was also cleaned by ensuring that the
start and stop points of the data fell in zero. In the next stage, 13 time
domain features were extracted (discussed below) from the current
signal. Finally, the features were used to train and test the random
forest.

4.1. Setup configuration

Fig. 5 shows the schematic of the test facilities used to examine the
broken rotor bar fault. The system consisted of a three phase power
supply, an LS-PMSM, a torque and speed sensor, mechanical couplings,
a magnetic powder brake acting as a load, a DC source, a Hall-Effect
current sensor, an oscilloscope, and a computer.

Experimental tests were performed on a two-pole-pair LS-PMSM to
evaluate the accuracy of fault detection achieved through the integra-
tion of time domain features and a random forest algorithm.
Experimental data was directly obtained from the test motors by using
the test bench shown in Fig. 6(a). The magnetic powder brake was
coupled to the LS-PMSM to produce four different levels of starting
loads: 0 Nm, 0.5 Nm, 1.0 Nm, and 1.5 Nm. The brake was controlled
with current from the DC power supply. The broken rotor bar fault was
made by drilling into the rotor bars, with an example shown in
Fig. 6(b). Table 1 lists the parameters of the LS-PMSM used in this re-
search.

In fault monitoring of motors, stator current signal is commonly
used due to its noninvasive nature, making it easy to measure and
analyze in industry. In LS-PMSM, the squirrel-cage bars carry appreci-
able current during the startup stage, while little or no current when the
machine operates in steady-state [36]. Thomson et al. proposed mon-
itoring and analyzing the stator current during motor startup [37].
Transient current is an accurate method for detection of the failure in

an induction machine [37,38]. Broken bars generate extra components
in the stator current that depend on the rotor speed, and these can be
measured during the motor start up. However, these extra components
fade away or coincide with other components, like saturation-induced
components that do not contain information related to the fault, when
the motor reaches steady state [39]. One of the challenges of using the
current during startup, and one of the main reasons why it has not been
commonly used for fault detection, is the complexity of extracting fault
characteristics as the startup current is extremely unsteady and its
period is quite short [40]. Recent analysis of transient current signature
in induction motors [28,29] has shown that transient stator current is
independent of load conditions that make it suitable for fault detection.
In [30,31], the effect of load for fault detection in induction motors
during the transient state was not considered. However, in LS-PMSMs
the starting torque decreases whenever there is a broken rotor bars
[32]. In this paper, we also consider the effect of load on the starting
time.

The current signal data was acquired with the Pico Scope 4424
oscilloscope and its accompanying software. For each test, the current

Fig. 4. The flowchart diagram of fault diagnosis system.

Fig. 5. Schematic of the LS-PMSM test facility.

Fig. 6. (a) Experimental test bench and (b) Rotor with one bar breakage.

Table 1
Motor specifications.

Parameters Value

Rated output power (HP) 1
Rated voltage (V) 415
Rated frequency (Hz) 50
Rated torque (Nm) 4.8
Rated speed (rpm) 1500
Rated current (A) 1.3
Starting torque 2.3
Number of poles 4
Connection Y
Number of stator slots 24
Number of rotor slots 16
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signal in one phase was recorded. The stator current signal is suitable
for the acquisition system, which employs a Hall sensor (LEM-LTS25-
NP) for this signal condition. A sampling rate of 5 kHz and a resolution
of 12b were used for recording the signals. The number of 40 periods of
startup current signal was selected for feature calculation, with ap-
proximately 4K sampled data used. We used the period of signal instead
of sampled data because the fundamental frequency is not fixed in the
normal electrical supply. To analyze the data, both the transient state
and a portion of the steady state of the current signal were considered.

Forty tests were performed for each condition. A total of 320 tests
were done based on healthy and faulty motor with four different levels
of starting load. The torque was measured by a Dacell-TRB-10Ktorque
meter, with the speed measured by a MP-981. Fig. 7 shows the current
signal extracted from healthy and faulty motors running under high
load conditions.

4.2. Signal processing and feature calculation

After preprocessing, those features related to broken rotor bar was
extracted from the raw signal (time domain signal). Statistical features
like average, variance, skewness, and kurtosis were used as a quick test
for changes in the pattern of signals. These parameters are commonly
used for statistical analysis of the current and vibration signals in the
time domain [41]. If variation in the condition of the motor causes a
change in the current signal, monitoring this signal can provide de-
tection information. The statistical features may be dimensional or non-
dimensional. Dimensional parameters include mean-index, Root Mean
Square (RMS), Root-sum-of-squares level (RSS), Peak–Peak value and
Energy. Non-dimensional parameters include pulse index, waveform
index (Shape Factor), impulsion index, peak index (Crest factor), tol-
erance index (Margin factor), skewness index, and kurtosis index [42].
Han et al. compared the features obtained from time domain analysis of
the steady state current signal and indicated the ability and efficiency of
these features for detection of different faults [43]. The definitions of
the features used in current work are the following:

Dimensional parameters:
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For the equations presented, X is a signal, N is number of sampled
data points of the signal, and σ is the standard deviation calculated as
follows:

∑= −
=

σ 1
N

(X X )
i 1

N
Mean

2
(14)

4.3. Experimental setup for classification

We used the Python Scikit-learn library for the random forest im-
plementation [44], to conduct the test and training, and for the com-
parison with the other machine learning algorithms. In this im-
plementation, the random forest combines the decision trees by
averaging their probabilistic prediction, instead of having each decision
tree vote for a single class [44]. We used the Gini impurity to measure
the quality of a split, and selected among p maximum random fea-
tures for each node split, where p is the total number of features.
Random forests were tested with 10, 100, 200, 500, and 1000 trees. We
further compared the performance of the random forest to a single
CART decision tree [25], Gaussian Naïve Bayes classifier [45], logistic
regression [46], linear ridge classifier [47], and a support vector ma-
chine (SVM) with a radial basis function (RBF) kernel [48]. For all
experiments, we measured out of sample performance using the Area
under the ROC Curve (AUC) from 5-fold cross-validation. After training
the random forest, we used the feature importances for feature selection
[14,49]. The results show how the accuracy of the random forest
changed as a factor of the number of features used, starting with the 13

Fig. 7. Experimental current signal in high-load condition for a healthy and a faulty
motor.
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maximum features and subsequently removing the less important fea-
tures.

5. Results and discussion

Table 2 presents the results of a random forest algorithm trained
with different feature sets and number of trees in the forest. First, we
used all 13 features to train and test the random forests. The perfor-
mance for a random forest with 100 trees was 99.6%. However, the
performance remains consistent independent of the number of decision
trees. Next, we reduced the number of features by using the feature
importances of the random forest. Fig. 8 shows a plot of the importance
of each of the 13 features. The three most informative features were
mean-index, impulse factor, and shape factor. These three features were
used to train and test another set of random forests. The performance of
a random forest with 100 trees and using these three features was also
99.6%, the same as when using all 13 features. In addition, the per-
formance of the random forest when using three features is independent
of the number of trees in the forest. Lastly, using only the two top
features, mean-index and impulse factor, gives results comparable to
using only three features.

Given that two features are sufficient to yield high performances
and that the performance of the random forest is independent of the

number of trees, we hypothesized whether all the trees in the random
forest were the same when using only two features. To test this hy-
pothesis, we trained and tested a single CART decision tree using dif-
ferent random seeds, and examined the resulting topologies of the de-
cision trees.

Fig. 9 illustrates two example decision trees generated using dif-
ferent random seeds. The first decision tree (Fig. 9(a)) has depth four
and a total of nine nodes. The decision nodes of the first decision tree
test different values of the mean-index and the impulse factor to de-
termine whether the motor is healthy or faulty. For example, following
one path of the tree indicates that if the mean-index of the startup
current sample is less than or equal to −0.269, then the motor is faulty.
Another path of the decision tree shows that if the mean is greater than
−0.269, the impulse factor is less than or equal to 0.4642, and the
mean-index is less than 0.3446, then the motor is healthy. In contrast,
the second decision tree (Fig. 9(b)) has depth two and a total of five
nodes. In particular, the second decision tree relies solely on the mean-
index feature to determine whether the motor is faulty or healthy. This
shows that even when using only two features, the random forest will
contain diverse trees which make it less likely to over fit to the training
set.

To assess the effectiveness of random forest, we tested baseline al-
gorithms on our transient current data set from the LS-PMSM. The AUC

Table 2
The accuracy results of random forest for broken rotor bar detection based on different
number of features. Means and standard deviations (STD) over folds are reported.

Features All 
features

Mean-index, 
Mean-index, 
Impulsion Impulsion,

Shape Factor

A
cc

ur
ac

y

10 Tr
ee

s mean 99.5 99.3 99.3

STD 0.007 0.008 0.012

10
0

Tr
ee

s mean 99.6 99.6 99.6

STD 0.007 0.006 0.006

20
0 

Tr
ee

s mean 99.8 99.6 99.6

STD 0.003 0.006 0.006

50
0

Tr
ee

s mean 99.8 99.6 99.6

STD 0.003 0.006 0.006

10
00

 
Tr

ee
s mean 99.7 99.6 99.6

STD 0.005 0.006 0.006

Fig. 8. Feature importance for the 13 features.

Fig. 9. (a) CART decision tree built and trained using mean-index and impulse factor, and
(b) CART decision tree built and trained using mean-index and impulse factor, but only
mean-index is used in the nodes of the decision tree.
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for the random forest (with 100 trees) compared to the other algorithms
is reported in Table 3. We tested all the algorithms using all 13 features,
using only three features (mean-index, impulsion factor, and shape
factor), and using only two features (mean-index and impulsion factor).
The random forest outperforms all of the other classifiers. For some of
the methods, such as CART and Naïve Bayes, reducing the number of
features leads to minimal drop in performance. For the SVM, reducing
the number features results in a minimal increase in performance.

The approach presented here can detect whether the LS-PMSM is
healthy or faulty by using a random forest to analyze transient current
signal data from the LS-PMSM. Current signature analysis has the ad-
vantage of being non-invasive. In addition, feature importances derived
from building the random forest was be used to reduce the number of
features, with the random forest still maintaining high prediction ac-
curacy. The performance of the random forest was independent of the
number of trees in the forest. Finally, even though the random forest
performed the best, as highlighted bold in the table,all the other
methods performed well with accuracies of over 90%.

In this case study, random forest outperformed the other classifiers.
A random forest combines the predictions of the decision trees in the
forest by averaging their predictions. This combination of the in-
dividual estimations made by the trees in the forest lowers the variance
of the model, which gives it a predictive advantage over a single, simple
classifier [24].

6. Conclusions

In this paper, we presented a new approach for the fault detection of
rotor bars in LS-PMSM using random forests. We collected the transient
current signal during the startup phase of a healthy LS-PMSM machine
and an LS-PMSM machine with rotor faults. During the data collection,
the LS-PMSM machines were subjected to different load conditions.
Experimental results indicate the validity and reliability of the random
forest fault detection method. The approach attains a high correct rate
of diagnosis of 98.8%. The accuracy of the random forest was found to
be independent of the number of trees. With feature importances, we
identified mean-index and impulsion as the two most important fea-
tures. With these two features alone, the random forest achieved a
performance of 98.4%. Comparing the random forest to other machine
learning algorithms showed that random forest performed the best.
However, all algorithms achieved accuracies over 90%, which gives
practitioners the confidence and flexibility to choose various types of
algorithms and not be limited to random forests.
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