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Abstract. Cloud elasticity is a unique feature of cloud environments,
which allows for the on demand (de-)provisioning or reconfiguration of
the resources of cloud deployments. The efficient handling of cloud elas-
ticity is a challenge that attracts the interest of the research community.
This work constitutes a survey of research efforts towards this direction.
The main contribution of this work is an up-to-date review of the lat-
est elasticity handling approaches and a detailed classification scheme,
focusing on the elasticity decision making techniques. Finally, we discuss
various research challenges and directions of further research, regard-
ing all phases of cloud elasticity, which can be deemed as a special
case of autonomic behavior of computing systems (This research has
been co-financed by the European Union (European Social Fund - ESF)
and Greek national funds through the Operational Program “Education
and Lifelong Learning of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in knowledge
society through the European Social Fund.”).

1 Introduction

Cloud computing forms a deployment model, which aims to reduce the momen-
tary cost of the computing resources through the leasing of dynamically adjusted
virtual resources, which can be occupied on-demand. Virtual resources are vir-
tual versions of actual resources, most commonly in the form of Virtual Machines
(VMs), which leverage the virtualization technology [65]. The offered pay-as-you-
go pricing model accompanied by the elastic resource handling, has assisted the
wide adoption of the cloud deployments, as the client is obliged to pay only for
the used resource. As such, cloud computing has managed to make the provision
of remote computing resources (e.g., VMs) the main option not only for scientific
institutions but any size of organizations and enterprises. However, the efficient
resource handling is a key aspect to the deployment cost reduction.

There are numerous works that propose various cloud elasticity handling
mechanisms. In this work, our focus is on all aspects of elasticity, but we par-
ticularly aim to shed light on the decision making mechanisms in relation with
the underlying models employed. Additionally, through our taxonomy, we aim to
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render the various techniques, which nowadays tend to be developed in isolation,
more comparable with each other.

We regard elasticity techniques as an interdisciplinary field of two main areas:
distributed/cloud computing and autonomic computing. As a field of autonomic
computing, it comprises all four phases of the MAPE loop [44], namely Moni-
toring, Analysis, Planning and Execution. Each distinct phase presents unique
research challenges, which are addressed by the presented works with various
approaches. In this work, we mostly focus on the last three phases.

Some efforts to create an overview of the cloud elasticity area have been made
in the past, for example [26] is complementary to our work, but it focuses more on
the tools, the benchmarks and the workloads. We present elasticity strategies in a
more broader fashion as we elaborate more on the elasticity decision mechanism.
[48] is also complementary to our work, but we present more up-to-date proposals
and cover a more extended range of elasticity actions and objectives. An older
and narrower survey has also appeared in [33]. A general systematic review
about commercial cloud services is conducted in [46], where the authors present
the main challenges regarding the elasticity property. As such, our work fills an
important gap on a timely issue.

The structure of this survey paper is as follows. In Sect. 2, we present the
taxonomy and the classification table. In Sect. 3, we delve into more details for
each classification dimension of our taxonomy and we outline the main findings.
We conclude in Sect. 4.

2 Taxonomy and Classification

In order to provide a concise classification of the existing approaches to cloud
elasticity, we first propose a taxonomy that will enable our work to shed light on
the differentiating aspects of the various proposals. The taxonomy is summarized
in Fig. 1 and consists of the following dimensions:

Fig. 1. Classification scheme
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– Scope. This aspect is divided into two classification categories (i) the Enactor
and the (ii) Application Type. The former indicates whether the elastic tech-
nique is applied by the cloud infrastructure provider (Cloud Provider (CP))
or the user of the cloud infrastructure, who deploys and manages cloud appli-
cations on top of the cloud infrastructure (Service Provider (SP)). Application
Type indicates whether the proposal refers to the elastic handling of a par-
ticular type of cloud application from the following list: relational databases
(DBs), NoSQL databases (NoSQL DBs), Multi-tier Applications (e.g., typi-
cal business web applications), Generic (if the tool is application-agnostic) or
Storage.

– Purpose. In this dimension, we classify the techniques according to the purpose
of elasticity actions. The purpose can be one of the following: (i) Performance,
(ii) Availability, (iii) Cost, (iv) Energy. Performance, refers to the maintenance
or guarantee of acceptable, either user or Service Level Agreement (SLA)
specified, application performance. Availability refers to the degree to which
applications and resources are in an operable and committable state at the
time point when they are needed by end users [42]. Cost refers either to the
reduction of the operational cost of the application deployed in the cloud,
commonly also maintaining the Performance goal, or to the maintenance of
cost thresholds under specific performance constraints. Finally, the Energy
category, is closely related to the Cost one but covers elastic techniques, which
directly aim at minimizing the energy footprint.

– Decision Making. There are four distinct categorization criteria that charac-
terize the decision making procedure of every work in our taxonomy, namely
(i) Trigger, which indicates whether the elasticity mechanism is triggered in
a reactive or proactive manner; (ii) Mechanism, which refers to the decision
making methodology; (iii) Prediction Model (PM), which denotes the utiliza-
tion of a model to predict future incoming load variations or specific mea-
surement values; and (iv) System Model (SM), which refers to the utilization
of a model to represent the (elastic) behavior of the system, on top of which
the complete elasticity policy is built (e.g., queues). Elasticity mechanisms are
further classified into the following categories: (1) Rule Based, (2) Mathemat-
ical/Statistical Optimization, (3) Machine Learning, (4) Control Theory and
(5) Model Checking according to the main field to which the elasticity policy
belongs.

– Elastic Action. Cloud resource elasticity may be applied in different forms
and can refer to modifications in (i) the size (Vertical Scaling (VS)), (ii) the
location (VM Live Migration (VMLM)) or (iii) the number of VMs employed
(Horizontal Scaling (HS)). Examples of these three elasticity types are the
allocation of more memory or CPU to a VM, moving a VM to a less loaded
physical machine and increasing the number of VMs of an application cluster,
respectively. Elastic Action additionally includes two other elasticity types,
(iv) the Application Reconfiguration (AR), where the elastic tool is capable
of handling specific application aspects (e.g., DB cache size) and (v) Applica-
tion Live Migration (ALM), where only application-specific components are
migrated instead of the full VM, such as database instances.
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– Provider. This classification category refers to the number of cloud infrastruc-
ture providers that the elastic tool supports simultaneously. The possible val-
ues are (i) Single, which denote that only one cloud provider is supported, (ii)
Single*, which denotes that more than one providers are supported, however
not simultaneously and (iii) multiple, where the elasticity control is spread
across multiple cloud providers simultaneously.

– Evaluation. Finally, the last aspect refers to the type of the Evaluation of
every work. The possible values are: (i) Simulation, where the results are
obtained based on computations on a simulated artificial environment (e.g.,
OMNeT++), (ii) Emulation where the evaluations results are obtained in an
artificial environment that behaves according to real-world traces, and (iii)
Real, where the elastic tool is applied on a real cloud infrastructure.

Based on the taxonomy above, we classify the existing proposals for cloud
elasticity as shown in Table 1. The taxonomy above does not cover the type of the
feedback information collected by the environment to drive the elasticity decision
making and enforcement, because the type of the feedback seems to play a less
important role in classifying the proposals. More specifically, all proposals utilize
a mechanism to monitor specific system/network/application-specific metrics to
assist the decision making. To deal with possible load spikes or measurement
instabilities, many works utilize smoothing techniques like Exponential Weighted
Moving Average (EWMA), Exponential Moving Average (EMA) or just Moving
Average (MA). Further details are omitted due to space constraints.

3 Overview of Existing Solutions

In this section, we provide details with respect to the main solution approaches
for each taxonomy dimension in turn.

3.1 Scope

The first aspect of the scope dimension indicates who is responsible for the elas-
ticity mechanism. In several proposals, the elasticity technique is bundled with
the core cloud infrastructure and the corresponding techniques are described as
Cloud Provider -specific. For example, [37] relies on a tool that is installed on
top of IaaS infrastructures, and the DejaVu system in [68] extends the function-
ality of such infrastructures. Another set of proposals require special privileges
to resources (e.g., [54] depends on a custom KVM module and interface, [21] is
integrated into OpenStack, and [61] configures the CPU voltage and frequency)
or access to information that only a cloud provider is able to provide (e.g.,
[50] depends on physical machine local information). Nevertheless, the major-
ity of proposals enable the provision of advanced elasticity for cloud-based ser-
vices regardless of or extending the built-in elasticity functionalities of the cloud
providers; those are referred to as Service Provider -specific.

Regarding the application type on which the proposals focus, most of them
are either application independent or tailored to web service-based multi-tier
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applications. Most of the latter proposals support the elastic handling of all three
tiers of a web application (i.e., Web Server, Application Server, Storage Server
tiers), except from [18,32], which handle only the elasticity of the Application
Server tier, and [62,68], which simply target web services. A significant portion
of elasticity proposals targets the NoSQL area. The techniques in this group
are either system-specific (e.g., [23] targets Cassandra, [27] targets HBase, [58]
targets Infinispan, while [47] considers HDFS) or applicable to a larger set of
NoSQL systems, such as Cassandra, HBase, Voldemort and Infinispan [15,41,
45,53,64]. Elasticity in relational databases is considered by [20,31,59]. [20,31]
can be used with any relational database as they do not modify the database
engine, while in [59], the database engine is modified to support live migrations
employing a technique inspired by [30]. Finally, there is a single proposal that is
categorized as Storage [19], where the elasticity handling of storage functionality
in virtual machines is considered, through caching techniques.

3.2 Purpose

All the techniques appearing in Table 1 aim to improve performance. The only
exception is [55], where the elasticity aim is the increased availability through the
utilization of multiple cloud providers. The performance goal can be either fixed
(e.g., in SLAs or stated as user-defined thresholds) or expressed as continuous
monitoring and optimization of the system utility. In such works, the monetary
cost reduction is typically indirectly considered, through the pursue of utilizing as
few resources as possible while maintaining acceptable performance. In [35,56],
the performance goal is coupled with offering Availability guarantees.

Several proposals target financial cost reduction explicitly. More specifically,
[29,36,57] employ cost estimation to scale-in or -out the cloud resources, while
[25] use similar estimates to select between deployment on public or private
cloud infrastructure, and [62] performs a Return on Investment (ROI) analysis
before the actual deployment. Other techniques handle elasticity according to
budget limits. More specifically, [66] prevents scaling if the maximum available
cost is exceeded, [22] enforces an application reconfiguration (i.e. textual server
responses for bandwidth saving) to keep the cost below the budget limit and
[32] offers a budget classification (i.e. metal classification: gold/silver/bronze),
which configures the resource scaling limits. Finally, [18] tries to co-locate several
applications on the same VM to reduce the provisioning cost.

Additionally, there are two works that consider the Energy saving combined
with the Performance purpose. In [50] live migration is employed to set as many
machines to sleep mode as possible, whereas, in [61], VM resources are subject
to dynamic voltage and frequency scaling to save energy.

3.3 Decision Making

Triggering of Decision Making Process. The works are divided into (i)
Reactive, (ii) Proactive and (iii) combined Reactive and Proactive. On the one
hand, Reactive approaches are typically based on the continuous monitoring of
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specific metrics and the validation of threshold-based rules. Most commonly,
upon a single threshold violation, the decision making process is triggered. How-
ever, the decision process can be also triggered only after a pre-specified time
period of threshold violations (e.g., [55,57]), or a pre-specified number of violat-
ing measurements (e.g., [21]), to avoid over-reacting. On the other hand, Proac-
tive approaches employ a mechanism to predict the future load variation and/or
the future behavior of the system. However, purely proactive approaches tend
to suffer from the fact that they are not able to cope with sudden workload
spikes. To overcome this concern, works like [17,20,43] adopt a hybrid approach.
In addition, [16,38] propose the utilization of reactive approaches for scaling-out
and proactive approaches for scaling-in. The former is used to allow for quick
adaptations to workload spikes. There are also proposals that utilize reactive
approaches when the proactive mechanism is uncertain about the decision [61],
or when the predictor is not adequately trained to take a proper decision [51,52].
[62] proposes the combination of reactive and proactive techniques, where the
latter is activated on a daily basis. Finally, in [19], the reactive and proactive
approaches are not concurrently activated, but the system can support any of
them separately.

Decision Making Mechanism. In the previous section, we mentioned the
main methodologies used for elasticity decision making. Here, we elaborate on
this issue, describing the application first of single methodologies and then of
hybrid solutions.

However, the corresponding techniques need not be simple. For example, [17]
utilizes a bunch of concurrent prediction models to estimate load and check
for potential future threshold violations. Also, [20] uses a prediction model to
estimate the load for proactive scaling based on specified rules. System modeling
in general enhances the decision policies. In [49], the system is modeled as a queue
of jobs and an elasticity action is triggered upon a job arrival or completion. Two
interesting rule-based approaches that build on non-trivial system models are the
[35], where the system is modeled as an automaton moving to different states
because of rule enforcement, and [25], where a graph model that captures the
impact of elasticity rules on the entire system is adopted. As a final example, in
[39], a fuzzy rule-based approach is followed, where the user specifies rules in the
form “IF the workload is high, AND response-time is slow, THEN add two more
VMs to the existing resources”, without the need of characterizing the “high”
and “slow” values; those values are computed based on information provided by
technical stakeholders.

Mathematical/Statistical Optimization-Based Policies. These techniques model
the elasticity problem as an optimization one. In [32], the optimal scaling strat-
egy is found following a branch-and-bound technique after having performed
sophisticated time-series analysis to predict future external load. In [22], elastic-
ity decision making is reduced to a utility maximization problem amenable to
dynamic programming; this technique employs a queue model and model check-
ing as a pre-processing step to quantify the potential benefits of the employment



Cloud Elasticity: A Survey 159

of different types of algorithms for self-adaptation. The approach in [50] lever-
ages Bernoulli trials to find appropriate VM placing to guide the live migration.
Finally, optimization may refer to system modeling itself that then drives elastic-
ity; for example, [54] uses online profiling and curve fitting to yield a performance
model, which can predict whether the application is going to violate a target.

Machine Learning-Based Policies. Machine learning is commonly used in elas-
ticity decision making. [68] builds a system model in the form of a classifier,
while also clusters workloads in representative groups. Past elasticity decisions
for the same group influence future decisions. [31]’s approach is similar. In [63], a
markov-chain-based prediction model provides estimates that are fed to a multi-
variant classifier in order to classify future states as either normal or anomalous,
and take elasticity actions accordingly. An example of more advanced techniques
is in [41,45,64], where a Q-Learning approach is followed to compute the optimal
action-state values in order to indirectly solve a Markov Decision Model (MDP)
describing the system.

Control Theoretical Policies. Control theory, being a scientific field capable of
providing principled autonomic computing solutions, has been adopted by cer-
tain elasticity policies. As an example, [60] follows a control theoretical approach
that builds on top of a queue modeling representation of the system and also
employs a predictor. Also, in [40], an example of using Kalman filters and feed-
back controllers to drive elasticity is provided. Finally, [16] discusses a controller
scheme that combines proactive and reactive policies. As in other similar works,
the cloud infrastructure is modeled as a queue, while estimators for future exter-
nal load are assumed to be in place.

Hybrid Policies. The afore-mentioned policies correspond to decision modules
that employ one of the specified mechanisms. However, elasticity techniques often
employ several such mechanisms, as described below.

The most common hybrid approach is to combine rules with one of the rest
mechanisms. Rules can effectively extend control theoretical solutions. For exam-
ple, in [47], an integral controller is proposed, which is based on proportional
thresholding to dynamically adjust the upper and lower CPU utilization thresh-
olds used for elasticity decisions. In [18], linear regression is used to predict the
future load, and subsequently, the predicted values are fed into a custom model-
free proportional-derivative controller. The final decisions about the number of
VMs to be added or removed are taken according to a rule-based policy. Rules
can be combined with machine learning techniques as well. A representative of
this hybrid category is [51,52], where three models from the WEKA tool are used
to support the decision making. The first model is a time series forecaster that
estimates the future workload. The second model is an incrementally updateable
Naive Bayes model that learns the relationship between the current workload
and a classification schema of threshold violation, and the third model is also an
updateable Naive Bayes model which estimates the optimal number of VMs.
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Another family of hybrid solutions combine rules with some form of optimiza-
tion. In [43], the system is modeled as a closed form queueing network, where
mean value analysis is used to compute the queue lengths, and the response time,
throughput and utilization of the system. Following an iterative optimization tech-
nique based on Binary Search Trees, the technique tries to minimize the number
of VMs needed at each tier without violating performance thresholds. In [57], first
an optimization problem that finds the number of VMs maximizing the applica-
tion profit is solved, before dynamically generating the elasticity rules. [27] first
evaluates a rule to determine if a scaling action is required, and if this is the case,
a variant of a bin-packing problem is solved. [36] also uses rules to detect work-
load changes, and then runs an algorithm to decide on VM additions and removals
at each layer of a multi-tier application, so that the response time of the applica-
tion is below a specified threshold and the deployment cost is minimized. Another
form of combination of mechanisms appears in [38], where a rule-based reactive
technique is used to scale out the resources, while a more elaborate predictive tech-
nique, based on regression models (System Model), is used to scale in. [61] is based
on rules and prediction models and an interesting feature is that it directly tackles
prediction error through an adaptive padding technique.

The last family of hybrid techniques are those that combine machine learn-
ing with either optimization or control theory. In [29], the resource requirements
are continuously estimated according to the expected workload. The workload
is predicted using a polynomial approximation technique and then classified to
a set of workload classes. Then, a two-phase technique runs. First, the opti-
mal VM size (i.e., CPU and RAM amount) and the corresponding throughput
is specified, thus defining the potential need for vertical scaling. In the second
phase, the optimal number of VMs of the specified size is computed, thus defin-
ing the potential need for horizontal scaling. In [58], neural networks are used to
estimate the throughput and response time of the system and then, a controller
solves a constraint optimization problem to determine an optimal resource con-
figuration in terms of number of VMs and data replication degree. In [15], a
feedforward controller is used, which monitors the workload and uses a logistic
regression model to predict whether the workload will cause SLA violations and
react accordingly. This controller is combined with a feedback controller, which
monitors the performance and reacts based on the amount of deviation from the
desired performance specified in the Service Level Objective (SLO). Finally, in
[53], the system behavior for a given external load is clustered in representative
groups. This helps to instantiate descriptive models of horizontal scaling in the
form of Markov Decision Processes, which are optimally solved. A unique feature
of this work is that it employs in parallel model checking to provide probabilistic
guarantees regarding the expected performance of elasticity actions.

3.4 Elastic Action

The big majority of works on elasticity considers only Horizontal Scaling, where
the number of VMs is modified on the fly, e.g., [18,22,45,53,56,64]. There are
also works that utilize only Vertical Scaling, e.g., dynamically configuring the
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CPU [40] and the RAM and Disk size [62]. We also report a single technique
that performs VM Live Migration [50] and a work that performs Application
Live Migration [31], where only specific databases are migrated, instead of full
VMs. However, there are techniques that combine multiple actions. Horizon-
tal Scaling along with Application Reconfiguration is considered in [23,27,58].
The applied reconfiguration varies between the proposals. More specifically, in
[58], the replication degree is configured dynamically. In [23], the cache size is
dynamically controlled, while [27] can scale the maximum number of data par-
titions per node. [29,37,68] combine Horizontal and Vertical Scaling. From the
techniues that use a fixed number of VMs, [61,63] combine Vertical Scaling and
Live Migration. Horizontal Scaling is also combined with Live Migration [54]
and Application Live Migration [59]. Finally, there are two works that combine
three types of resource elasticity. [20] uses Horizontal Scaling and DB and VM
Live Migration, while [66] uses Horizontal Scaling, Vertical Scaling (i.e. CPU and
RAM configuration) and Application Reconfiguration (i.e., application architec-
tural changes).

3.5 Provider

Most of the works support a Single cloud provider, either public or private.
Some works support more than one provider, however not simultaneously. More
specifically, all of these works are compatible with Amazon-EC2 and also support
Grid5000 (used by [60]), Nimbus-based cloud platform (used by [49]), OpenNeb-
ula (used by [66]), Eucalyptus (used by [38]), DAS-4 (i.e. a multi-cluster system
hosted by universities in the Netherlands used by [32]) and OpenStack (used by
[41,45,64]). Finally, there are works that handle the elasticity between multiple
cloud providers simultaneously, such as [55,56] that are deployed on a variety of
private and public cloud infrastructures.

3.6 Evaluation

As presented in Table 1, most of the works use Real deployments for the evalu-
ation of their proposals. The RUBiS benchmark [11] is used in [35,38,40,54,68],
the TCP-[C/W] [13,36,37,60]. Another popual benchmark is YCSB [24] used in
[15,20,23,41,45,64]. [60] additionally utilizes the Apache Hadoop [1] with the
MRBS benchmark suite [6]. Some works use both TPC and YCSB [27,59] or
both RUBiS and IBM System S [34,61,63]. CloudStone [3] is used in [29,47]; the
latter uses the Olio web 2.0 toolkit [9] of the CloudStone in combination with
the Faban workload driver [4]. MediaWiki [7] with the WikiBench benchmark
[14] is used in [32] and the FIO micro-benchmarking tool [5] is used in [19] in
combination with the USR-1 trace of the MSR traces [8]. The Apache JMeter
[2] is used in [39]. Finally, there are other proposals that utilize custom made
benchmarks like [21,31,43,58].

There are also works that perform evaluation using simulations [16,17,22,51,
52], e.g., utilizing the R statistics suite [10], or OMNeT++ [67]. The simulations
can also encapsulate benchmarks, such as the one in [12]. Finally, [53,57] use
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emulations. [57] uses the FIFA 1998 World Cup traces and the Amazon EC2
payment policy, while [53] uses real traces from a Cassandra NoSQL cluster.

3.7 Discussion and Research Challenges

In this survey we examined the Analysis, Planning and Execution aspects of the
state-of-the-art in cloud elasticity. In the Analysis phase, the retrieved measure-
ments are used to examine the current state of the system (e.g., whether it is
under- or over-utilized) and/or estimate the future load variations. In the former
case, a practical approach to determine the current state of the system is to use
threshold-based rules. However, the specification of such rules is not a simple
task, as it depends on the application needs and demands system administra-
tive skills. To overcome this concern, various approaches are proposed, like the
fuzzy rule specification, where the stakeholders knowledge is already analyzed
and stored, allowing the user to define high-level thresholds, which are automat-
ically mapped to concrete threshold-based rules. Other approaches propose the
transformation of the SLAs and SLOs to threshold based rules, utilizing custom
SLA and SLO specification languages and rule conflict solving mechanisms. In
the case of future load prediction, there are numerous approaches, which deal
with the prediction inaccuracies. There are works that attempt to bound the
prediction error, or take inaccuracies into consideration. There are also propos-
als that utilize more than one prediction algorithms implementing mechanisms
to select the most appropriate one based on the current workload.

Knowing the current state of the system and/or the future load variations,
in the Planning phase, the actual elastic decision should be made. However, this
step also hides some difficulties like the decision between the scale-in or scale-
out, the selection of the appropriate elasticity type or the determination of the
degree of scaling. To deal with these decisions, various approaches are used like
pre-specified rules (i.e. the simplest form of planning), utility functions, system
models, prediction mechanisms, machine learning techniques or any combina-
tion of the previous, to obtain the system behavior before the actual decision
enforcement. Each approach has its own drawbacks, as discussed below:

– The usage of pre-specified rules restricts the flexibility of the application, as
the amount and the type of scaling is defined a-priory. To deal with this
concern, dynamic rule specification or rule update has been proposed in the
literature.

– The optimization of a utility function, which contains appropriately selected
and weighted metrics, can lead to an acceptable trade-off between contra-
dicting scaling options, however the specification of such a function demands
special administrative knowledge. To overcome these concerns, fixed utility
functions are proposed, which are generic enough to be applied to many sys-
tems.

– The specification of a system model is not a trivial task as it is difficult to
create a reliable model that maps the input and output variables of the system.
In addition, the system model hinders the flexibility of the elastic mechanism
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as, after any structural change of the system, the model needs to be rebuilt.
To this end, model generators are proposed, which generate a model without
user interference.

– The approaches that utilize system behavior predictions suffer from predic-
tion inaccuracies. The proposed solution is similar to those mentioned for the
analysis phase.

– A promising approach is the utilization of machine learning, where the elastic
mechanism is trained before its actual deployment. The training phase can
also be applied during the actual deployment, allowing for dynamical train-
ing. However, in the latter case, the mechanism may not able to handle the
elasticity well from the beginning of the deployment. To avoid wrong decisions
that under- or over-provision the system, proposals tend to use a threshold-
based reactive mechanism until the mechanism is considered well-trained and
capable of efficiently handling the elasticity. An interesting related discussion
is also in [28].

In the Execution phase, the actual elastic decision is enforced through the
elastic manager orchestration. The elastic manager is either a standard mecha-
nism provided by the cloud providers as a service or through a remote API (e.g.,
Amazon EC2 Auto Scale service), or an external manager.

Aspects Requiring Further Research. As a final observation, although a
big set of elasticity proposals exists and a considerable amount of them deal with
multiple objectives, no systematic solution for dynamic multi-objective optimiza-
tion under several conflicting objectives, e.g., guaranteeing Pareto optimality, has
been proposed. We believe that this is an interesting direction for future work.
Another interesting direction is to provide frameworks that can combine several
of the solutions that are now isolated. Finally, more research on benchmarks is
needed to better assess the quality of each of the proposals.

4 Summary

This survey aims to classify and provide a concise summary of the several pro-
posals for cloud resource elasticity today. We presented a taxonomy covering
a wide range of aspects, and we discussed details for each of the aspects, and
the main research challenges. Finally, we proposed fields that require further
research.
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