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Abstract

This is the second paper of the series of papers dealing with access con-

trol problems in cloud computing by adopting quantum techniques. In this

paper we study the application of quantum encryption and quantum key dis-

tribution in the access control problem. We formalize our encryption scheme

and protocol for key distribution in the setting of categorical quantum me-

chanics (CQM). The graphical language of CQM is used in this paper. The

quantum scheme/protocol we propose possesses several advantages over exist-

ing schemes/protocols proposed in the state of the art for the same purpose.

They are informationally secure and implementable by the current technology.

Keywords: quantum encryption, quantum key distribution, categorical

quantum mechanics, access control

1. Introduction

This is the second paper of the series of papers dealing with access control

problems in cloud computing by adopting quantum technique [30]. A simple

model for the access control problem in cloud computing is shown in Fig. 1.

Such a model has three components: data owner, cloud and data user. The
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data owner places on the cloud the encrypted data (bit or qubits) which the

user wants to access. Upon receiving a data access request from the user, the

data owner employs an access control policy to decide whether the user should be

granted the access. Afterwards, if the access control policy says that the access

should be granted to the user, then the data owner sends the corresponding key

and a certificate to the user. Finally, the user sends the certificate to the cloud

and gets the encrypted data, upon the successful verification of the certificate

by the cloud.

CloudOwner User

3. access

control policy

1. encrypted data 6. encrypted data

5. certificate

4. key & certificate

2. data access request

Figure 1: Data access in cloud computing.

In the first paper of this series [30], we developed quantum imperative logic

as a formal language for the specification of access control policies, which helps

the owner in deciding whether to grant access to the user or not. But how to

grant certain access to a user? Cryptography offers a convenient tool for solv-

ing this problem. Many cryptographic solutions to the access-granting prob-

lem have been proposed [2, 6, 7, 8, 23, 24]. The basic idea is: first encrypt

all resource, then assign keys for decryption to those users who are permitted
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to access. More precisely, suppose we have resources {data1, . . . , datan}. We

first use key1, . . . , keyn to encrypt those data. So we have Enckey1
(data1), . . . ,

Enckeyn
(datan). Then we assign keyi to a user iff the user is permitted to ac-

cess datai. Therefore, encryption and key distribution plays a pivotal role in

granting access. In this paper, we develop quantum techniques for encryption

and key distribution, using the framework of categorical quantum mechanics

(CQM).

The structure of the rest of this paper is as follows: we provide some back-

ground knowledge on categorical quantum mechanics in Section 2. Then we

introduce encryption by complementary observables in Section 3. We present

our quantum protocol for key distribution in Section 4 . We discuss related

works in Section 5 and conclude this paper in Section 6.

2. Categorical quantum mechanics

Categorical quantum mechanics [1, 16, 17, 11, 4, 13, 14] concerns the study

of quantum computation and quantum foundations using category theory, as

well as the graphical language closely related to category theory. Composition

of quantum systems in CQM is treated as a primitive connective, which is

conveniently described by dagger symmetric monoidal category (†-SMC).

2.1. Category theory

Definition 1 (category). A category C consists of:

1. a collection ob(C) of objects,
2. for every pair of objects A,B, a set C(A,B) of morphisms,

3. for every object A, a special identity morphism: 1A ∈ C(A,A),

4. sequential composition operation for morphisms:

◦ : C(B,C)× C(A,B)→ C(A,C),

satisfying the following conditions:

(1) ◦ is associative on morphisms: (h ◦ g) ◦ f = h ◦ (g ◦ f),
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(2) ◦ is unital on morphisms: 1B ◦ f = f = f ◦ 1A, for all f ∈ C(A,B).

We can graphically represent objects as wires and morphisms as nodes at-

tached with an input wire and an output wire. Those graphs are read from

bottom to top. In this graphical language the conditions of sequential compo-

sition, associativity and unitality become trivial.

A

A

f

B

A

f

B

g

C

Example 1. In FinHilb, which is the category of finite dimensional Hilbert

spaces, objects are finite dimensional Hilbert spaces over complex numbers, mor-

phisms are linear maps. Identities are the identity function on every Hilbert

space. Sequential composition is the composition of linear maps.

Definition 2 (functor). Let C and D be categories. A functor F : C → D is

defined by

• for each object A ∈ ob(C) an object F (A) ∈ ob(D).

• for every morphism f ∈ C(A,B) a morphism F (f) ∈ D(F (A),F (B)) such

that

F (f ◦ g) = F (f) ◦ F (g) and F (1A) = 1F (A).

Definition 3 (natural isomorphism). Let F ,G : C → D be functors. A

natural transformation τ : F → G is a family of morphisms in D, τA ∈
D(F (A),G(A)), indexed by the objects of C, such that the following square com-

mutes:

F (A)
τA

F (f)

G(A)

F (B)
τB

G(f)

G(B)
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for all morphisms f ∈ C(A,B). A natural isomorphism is a natural transforma-

tion where each of the τA is an isomorphism. That is, there exists a morphism

τ−1
A such that τ−1

A ◦ τA and τA ◦ τ−1
A are identities.

Definition 4 (monoidal category [11]). A monoidal category consists of the

following data:

• a category C ,

• a unit object I ∈ ob(C),

• a bifunctor −⊗− : C × C → C such that

1. ⊗ is a parallel composition operation for objects:

⊗ : ob(C)× ob(C)→ ob(C),

2. ⊗ is a parallel composition operation for morphisms:

⊗ : C(A,B)× C(C,D)→ C(A⊗ C,B ⊗D),

3. ⊗ and ◦ satisfy the interchange law:

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2).

4. 1A ⊗ 1B = 1A⊗B

• two natural unit isomorphisms

λA : A � I ⊗A and ρA : A � A⊗ I,

and a natural associativity isomorphism

αA,B,C : A⊗ (B ⊗ C) � (A⊗B)⊗ C ,

which are subject to the pentagon and triangle coherence equations, which

can be found in Coecke and Paquette [15, p.209].
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The bifunctor ⊗ is also called tensor product, which serves as parallel com-

position. It is graphically represented as horizontally putting two morphisms

(objects) together. The unit object is represented as an empty graph. It can be

easily verified that all the conditions of monoidal category trivially hold in the

graphical representation.

A⊗ C := A C f ⊗ g :=

A

f

B

C

g

D

Example 2. FinHilb is a monoidal category. In FinHilb, parallel composi-

tion is the tensor product of Hilbert spaces. I is the field of complex numbers

C, which is a 1-dimensional Hilbert space. The left- and right-unit natural iso-

morphisms are respectively

λA : A→ C⊗A :: a �→ 1⊗ a and ρA := A→ A⊗ C :: a �→ a⊗ 1.

The associativity natural isomorphism is

αA,B,C := A⊗ (B ⊗ C)→ (A⊗B)⊗ C :: a⊗ (b⊗ c) �→ (a⊗ b)⊗ c.

Definition 5 (symmetric monoidal category [20]). A monoidal category is

symmetric if it is equipped with a natural isomorphism called swap:

σA,B : A⊗B → B ⊗A

defined for all objects A,B, satisfying:

• σB,A ◦ σA,B = 1A⊗B,

• λ−1
A ◦ σA,I = ρ−1

A ,

• (σC,A ⊗ 1B) ◦ αC,A,B ◦ σA⊗B,C = αA,C,B ◦ (1A ⊗ σB,C) ◦ α−1
A,B,C .

The swap morphism is graphically represented as the following:
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σA,B :=

BA

AB

Definition 6 (dagger functor † [14, 28]). A dagger functor for a symmetric

monoidal category is an operation † that satisfies the following:

• is unaltering on objects and identity morphisms: A† = A, 1†A = 1A,

• reserves morphisms: (f : A→ B)† := f† : B → A,

• is involutive: (f†)† = f ,

• and respects the symmetric monoidal category structure:

(g ◦ f)† = f† ◦ g† (f ⊗ g)† = f† ⊗ g†

σ†A,B = σB,A α†A,B,C = α−1
A,B,C λ†A = λ−1

A .

In the graphical language, if we apply the dagger functor to a graph, then

the graph reflects vertically.

Definition 7 (dagger symmetric monoidal category [14]). A dagger sym-

metric monoidal category (†-SMC) is a symmetric monoidal category equipped

with a dagger functor.

Example 3. FinHilb is a †-SMC. In FinHilb, the swap for every Hilbert space

A,B is the natural isomorphism

σA,B := A⊗B → B ⊗A :: a⊗ b �→ b⊗ a.

† is the adjoin (transpose conjugate) operator.

Definition 8 (self-dual dagger compact category [14]). A self-dual dag-

ger compact category is a †-SMC in which for each object A there is a morphism

ηA : I → (A⊗A):

1. (η†A ⊗ 1A) ◦ (1A ⊗ ηA) = 1A
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2. σA,A ◦ ηA = ηA

Graphically, the compact structure ηA and its adjoin η†A are respectively

represented by a cup and a cap:

ηA :=
η†A :=

The compactness graphically means that the following is satisfied:

= =

In every monoidal category C, a morphism s ∈ C(I, I) is called a scalar, which

is understood as a number. Graphically, we represent scalars as diamonds:

0 1

Example 4. In FinHilb, scalars form the field of complex numbers C.

2.2. Frobenius algebra and observable

Definition 9 (Frobenius algebra [12]). Let C be a monoidal category. A

Frobenius algebra on C is an object A together with (multiply, unit, copy, and

delete) morphisms

m : A⊗A→ A u : I → A c : A→ A⊗A d : A→ I.

satisfying the following equations:

• associativity: m ◦ (m⊗ 1A) = m ◦ (1A ⊗m). Graphically, associativity is

visualized as the following:

=
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• coassociativity: (c⊗ 1A) ◦ c = (1A ⊗ c) ◦ c. Graphically,

=

• unitality: m ◦ (u⊗ 1A) = 1A = m ◦ (1A ⊗ u). Graphically,

= =

• counitality: (d⊗ 1A) ◦ c = 1A = (1A ⊗ d) ◦ c. Graphically,

= =

• Frobenius condition: (1A ⊗m) ◦ (c ⊗ 1A) = c ◦m = (m ⊗ 1A) ◦ (1A ⊗ c).

Graphically,

= =
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Definition 10 (commutative Frobenius algebra [12]). A Frobenius alge-

bra is commutative when the following equations hold:

σA,A ◦ c = c m ◦ σA,A = m.

= =

Definition 11 (dagger commutative Frobenius algebra [12]). A dagger com-

mutative Frobenius algebra on a dagger symmetric monoidal category is a com-

mutative Frobenius algebra that additionally satisfies the following equations:

c = m†, d = u†.

†
=⇒ †

⇐=

To describe a dagger commutative Frobenius algebra, we only need to de-

scribe the multiply and the unit, and define copy and delete by the dagger

functor.

Example 5. Consider the †-SMC FinHilb, C
n is an object of FinHilb. Con-

sider the orthonormal basis {|0〉, . . . , |n− 1〉}. Note that to specify a linear map

between Hilbert spaces, we only need to specify the functionality of the map on

an orthonormal basis. Now we let

1. MCn : C
n ⊗ C

n → C
n :: |i〉 ⊗ |j〉 �→

⎧⎪⎨
⎪⎩
|i〉 i=j

0 i �= j

2. UCn : C → C
n :: 1 �→

n−1∑
i=0

|i〉
3. CCn : C

n → C
n ⊗ C

n :: |i〉 �→ |i〉 ⊗ |i〉
4. DCn : C

n → C :: |i〉 �→ 1

Then FroACn = (Cn,MCn ,UCn ,CCn ,DCn) is a dagger commutative Frobenius

algebra.
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3. Encryption by complementary observables

Definition 12 (observable structure [11]). An observable structure in a †-
SMC is a dagger commutative Frobenius algebra (A,m,u) such that m◦m† = 1A.

Graphically,

=

An observable structure (A,m,u) induce a self-dual when setting ηA = m†◦u.

ηA := =

Example 6. Consider the object C
2 in FinHilb, let

1. m†z : C
2 → C

2 ⊗ C
2 ::

⎧⎪⎨
⎪⎩
|0〉 �→ |00〉
|1〉 �→ |11〉

2. uz : C → C
2 :: 1 �→ |0〉+ |1〉

Then Oz = (C2,mz,uz) is an observable structure.

Example 7. For C
2 in FinHilb, let

1. m†x : C
2 → C

2 ⊗ C
2 ::

⎧⎪⎨
⎪⎩
|+〉 �→ |++〉
|−〉 �→ | − −〉

2. ux : C → C
2 :: 1 �→ |+〉+ |−〉

Then Ox = (C2,mx,ux) is an observable structure.

Example 8. For C
2 in FinHilb, let |i〉 = 1√

2
(|0〉+i|1〉) and |i〉 = 1√

2
(|0〉−i|1〉)

1. m†y : C
2 → C

2 ⊗ C
2 ::

⎧⎪⎨
⎪⎩
|i〉 �→ |ii〉
|i〉 �→ |ii〉

2. uy : C → C
2 :: 1 �→ |i〉+ |i〉
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Then Oy = (C2,my,uy) is an observable structure.

Definition 13 (copyable point [11]). Let C be a †-SMC and (A,m,u) be a

Frobenius algebra on C. A copyable point of a (A,m,u) is a point p : I → A

such that c ◦ p = p⊗ p.

p

=

p p

Definition 14 (conjugate [11]). Let f : A→ B be a morphism. Its conjugate

f∗ : A→ B is defined as

f∗ := (1B ⊗ η†B) ◦ (1A ⊗ f ⊗B) ◦ (ηA ⊗ 1B).

A morphism f is self-conjugate if f = f∗. Graphically, the conjugate of f is

the horizontal reflection of f . Therefore, a self conjugate morphism is invariant

under horizontal reflection.

Example 9. Numbers/scalars are morphisms from I to I. In FinHilb, a num-

ber is self-conjugate iff it is a real number.

Definition 15 (classical points [11]). Given an observable structure (A,m,u),

a point p : I → A is classical in this structure if it is self-conjugate, copyable

and u† ◦ p = 1.

Example 10. For the observable structure Oz, |0〉 and |1〉 are classical points.

For Ox, |+〉 and |−〉 are classical points. More generally, every diameter in

Bloch sphere is an observable structure and the two endpoints of the diameter

are the classical points of the corresponding observable structure.

Definition 16 (unbiased points [11]). Given an observable structure (A,m,u),

a point p : I → A is unbiased for this structure if there is a scaler s : I → I

such that s⊗ (m ◦ (p⊗ p)) = p, i.e.
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s

p p

=

p

Example 11. For the observable structure Oz, |+〉, |−〉, |i〉 and |i〉 are unbiased

points. More generally, every point that lies on the equator of the Bloch sphere is

an unbiased point for Oz. The collection of all unbiased points of an observable

structure forms a circle that passes the center of the ball and is perpendicular

to the diameter corresponding to the observable structure.

Oz

|0〉

|1〉

|i〉 |i〉

|+〉

|−〉

|0〉

|1〉

3.1. Complementary observable

Definition 17 (complementary observable [11]). Two observables (A,m1,u1)

and (A,m2,u2) in a †-SMC is complementary if the following are satisfied:

• COMP1 : whenever k : I → A is classical for (m1,u1), it is unbiased for

(m2,u2).

• COMP2: whenever k : I → A is classical for (m2,u2), it is unbiased for

(m1,u1).

Every observable of qubits (C2,m,u) has two classical points. We denote

them by u and u¬ respectively.

Example 12. In FinHilb, for the object C
2, Ox, Oy and Oz are pairwise

complementary. More generally, every two perpendicular diameters in the Bloch

sphere represent two complementary observables.
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u1

u¬1

u¬2

u2

3.2. Encryption by phase shift over complementary observables

Coecke et al [11] showed that a phase shift of an observable of qubits

(C2,m,u) is isomorphic to a matrix |u〉〈u| + eiα|u¬〉〈u¬|, in which α ∈ [0, 2π).

We use S(α) to represent the phase shift which is isomorphic to |u〉〈u|+eiα|u¬〉〈u¬|.
For two complementary observables of qubits (C2, m1,u1) and (C2,m2,u2),

there is a unique observable of qubits (C2, m3,u3) which is complementary to

both (C2, m1,u1) and (C2,m2,u2). The phase shift S3(
π
2 ) of (C

2, m3,u3) maps

u1 to u2, u2 to u¬1 , u
¬
1 to u¬2 and u¬2 to u1. The result of applying S3(

π
2 ) to

{u1,u2,u
¬
1 ,u

¬
2 } is summarized in Table 1.

�����������state

morphism
S3(0) S3(

π
2 ) S3(π) S3(

3π
2 )

u1 u1 u2 u¬1 u¬2

u2 u2 u¬1 u¬2 u1

u¬1 u¬1 u¬2 u1 u2

u¬2 u¬2 u1 u2 u¬1

Table 1: Encryption by phase shift

Remark 1. The phase shift S(π2 ) is a generalization of the
√
NOT operator in

quantum computational logic [9, 21, 18, 22, 10]. Indeed, the matrix represen-

tation of
√
NOT is 1

2

⎡
⎣1− i 1 + i

1 + i 1− i

⎤
⎦, which is exactly |+〉〈+|+ e

π
2 i|−〉〈−|, the
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phase shift Sx(
π
2 ) of the observable Ox.

Definition 18 (key space). For two complementary observables of qubits (C2,

m1,u1) and (C2,m2,u2), the key space they induce is {S3(0),S3(
π
2 ),S3(π),S3(

3π
2 )}.

Definition 19 (encryption by complementary observables). For two com-

plementary observables of qubits (C2, m1,u1) and (C2,m2,u2), we let Key =

{S3(0),S3(
π
2 ), S3(π),S3(

3π
2 )}. An encryption by complementary observables is a

function Enc : Key×C
2 �→ C

2 which maps a qubit |α〉 to S|α〉, where S ∈ Key.

We will also use EncS(|α〉) to denote Enc(S, |α〉).

Definition 20 (informationally secure). An encryption scheme is informa-

tionally secure if for every qubit |α〉, if we encrypt it by taking keys according

to a uniform probability distribution over the key space {key1, . . . , keyn}, then
the result is a totally mixed state, i.e., the uniform probability distribution of

{Enckey1(|α〉), . . . ,Enckeyn(|α〉)} is a totally mixed state.

We remind the readers that the totally mixed state of a qubit is represented

by the density matrix 1
2

⎡
⎣1 0

0 1

⎤
⎦. In the Bloch ball, the totally mixed state is rep-

resented by the center of the ball. For two complementary observables of qubits

(C2,m1,u1) and (C2,m2,u2), a probability distribution φ over {u1,u
¬
1 ,u2,u

¬
2 }

such that φ(u1) = φ(u¬1 ) and φ(u2) = φ(u¬2 ) is always a totally mixed state.

Theorem 1. Encryption by complementary observables of qubits is informa-

tionally secure.

Proof : Let (C2, m1,u1) and (C2,m2,u2) be an arbitrary pair of complementary

observables of qubits. LetKey = {S3(0),S3(
π
2 ), S3(π),S3(

3π
2 )} be the key space

induced by this pair of complementary observables.

For the qubit u1, after encryption by complementary observables we get a

uniform probability distribution over {u1,u
¬
1 ,u2,u

¬
2 }, which is a totally mixed

state. Similarly, for the qubit u¬1 , after encryption by complementary observ-

ables we also get a uniform probability distribution over {u1,u
¬
1 ,u2,u

¬
2 }.
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Now, take u1 and u¬1 as the basis of qubits. Then every qubit |α〉 = au1+bu¬1

for some a, b ∈ C such that |a2|+ |b2| = 1. If we encrypt |α〉 by complementary

observables we get a uniform probability distribution over {au1 + bu¬1 , au2 +

bu¬2 , bu1 + au¬1 , bu2 + au¬2 }, which is still a totally mixed state. �

4. Key distribution: generalized quantum three-pass protocol

A three-pass protocol in cryptography [25] is a protocol which enables one

party to securely send a message to a second party by exchanging three en-

crypted messages. The essential idea of the three-pass protocol is that each

party has private keys for encryption and decryption and they use their keys

independently, first to encrypt the message, and then to decrypt the message.

Informally, the three-pass protocol for Alice to secretly send an object to

Bob works as follows

1. Alice puts the object into a box, locks the box and mails it to Bob.

2. Bob adds his own lock to the box and sends it back to Alice.

3. Alice removes her lock and sends the box back to Bob.

This protocol can be implemented by using the exclusive-OR operation ⊕
in classical cryptography:

1. For a bit x, Alice encrypts it with her key ka and then sends the encrypted

bit (x⊕ ka) to Bob.

2. Bob encrypts the encrypted bit with his key kb and sends (x⊕ ka)⊕ kb to

Alice.

3. Alice decrypts what she received by ka and obtains ((x⊕ ka)⊕ kb)⊕ ka =

x⊕ kb. She then sends x⊕ kb to Bob.

The weakness of the above implementation is that if an eavesdropper copies

the three messages x⊕ ka, (x⊕ ka)⊕ kb and x⊕ kb, then he can deduce x from

those messages because (x⊕ ka)⊕ ((x⊕ ka)⊕ kb)⊕ (x⊕ kb) = x. To overcome

this weakness, Kanamori and Yoo [19] propose a quantum implementation of

the three-pass protocol. Thanks to the quantum no-cloning theorem [31, 26],
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the quantum three-pass protocol is resistant to eavesdroppers. A disadvantage

of Kanamori and Yoo’s quantum three-pass protocol is that the key space of

their encryption is an infinite set. Recently, Qiu et al [27] developed another

quantum three-pass protocol in the framework of CQM such that the size of

the key space is significantly smaller. In this paper, we further generalize the

protocol proposed in [27].

Given two complemenytary observables of qubits (C2,m1,u1) and (C2,m2,u2),

we use a pair of classical points from an observable structure, say u1 and u¬1 ,

to encode 0 and 1, respectively. Our key space for encryption and decryption

is Key = {S3(0),S3(
π
2 ), S3(π),S3(

3π
2 )}. We let (k, k†) be a pair of encryp-

tion/decryption keys, where k† = S3(2π − iπ
2 ) for k = S3(

iπ
2 ).

Our quantum three-pass protocol for Alice to send a qubit |α〉 to Bob is

composed of the following steps:

1. Alice randomly generates her private key ka ∈ Key. Bob randomly gen-

erates his private key kb ∈ Key.

2. Alice encrypts |α〉 by ka and sends Enc(ka, |α〉) = ka|α〉 to Bob.

3. Bob encrypts the received ciphertext ka|α〉 by kb and sends kbka|α〉 to

Alice.

4. Alice decrypts kbka|α〉 by k†a and sends k†akbka|α〉 to Bob.

5. Bob decrypts k†akbka|α〉 by kb and obtains k†bk
†
akbka|α〉.

This protocol can be used by the data owner to send his key and certificate

to the user, as shown by the Step 4 depicted in Figure 1. The correctness of

our protocol is guaranteed by commutativity of phase shift over complementary

observables.

Theorem 2. The quantum three-pass protocol is correct.

Proof : Suppose Alice chooses u as her key and Bob chooses v as his key, then

we have the following graphical derivation:
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u
v
u†
v†

=

u
u†
v
v†

=

which means that the sequential composition of the operations of the 2 parties

applied in the protocol is equivalent to an identity operator. Therefore, the

qubit is correctly transferred. �
The security of most existing protocols of key distribution for access control

in cloud environments relies on the computational complexity of problems like

prime factorization. Therefore once a quantum computer is built, their protocol

may be compromised in polynomial time [29]. Conversely, our protocol is secure

with respect to quantum computers, since it provides informational security,

due to the complementarity of observables. Here a key distribution protocol is

informationally secure if the data

Theorem 3. The quantum three-pass protocol is informationally secure in the

sense that the qubit being transmitted at every stage of the protocol is a totally

mixed state.

Proof : This is a simple consequence of Theorem 1 and 2. �

5. Related work

The quantum one-time pad encryption scheme [5] is probably the most well-

known encryption scheme in quantum cryptography. The key space for quantum

one-time pad is {I,X,Z,XZ}. While this key space is much like a result of trial

and error, our encryption scheme is more systematic and has a deeper theoretic

background, besides ensuring the same security as quantum one-time pad.

The first and yet most influential protocol for quantum key distribution is

developed by Bennett and Brassard [3], known as the BB84 protocol. In the

BB84 protocol, more than a half of the transmitted qubits has to be disregarded.

The quantum three-pass protocol is more efficient in the sense that no trans-

mitted qubit has to be disregarded. Moreover, the quantum three-pass protocol
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can be used to secretly send quantum data, while BB84 cannot. The quantum

three-pass protocol introduced in [27] makes use of phase shift over two specific

complementary observables, namely, the Ox and Oz observable. The three-pass

protocol introduced in this paper is more general, in the sense that the two

complementary observables do not have to be the Ox and Oz observable.

6. Conclusion

In this paper we study the application of quantum encryption and quantum

key distribution in the access control problem. The quantum scheme/protocol

we propose in this paper has various advantages over existing schemes/protocols

proposed for the same purpose. They are informationally secure and imple-

mentable by the current technology. We remark that implementing quantum

cryptographic protocols is much easier than building quantum computers. Many

quantum cryptographic protocols have been realized in laboratories tens of years

ago. Moreover, nowadays there are commercial companies selling devices for

quantum key distribution and the technologies needed to implement the pro-

tocols in the paper are the same as the technologies needed for quantum key

distribution that has been realized by commercial companies.
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