
72 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

Performance Evaluation of RESTful Web Services
for Mobile Devices

Hatem Hamad, Motaz Saad, and Ramzi Abed

Computer Engineering Department, Islamic University of Gaza, Palestine

Abstract: Smart Mobile devices and web services are becoming very popular. Mobile devices are physically constrained
devices; low processor speed, limited memory, limited battery, and slow intermit wireless connection. This implies to take in
consideration these factors when implementing web services for mobile devices. In this paper, we evaluate the RESTful web
service for mobile devices against conventional SOAP web services. The experimental results show that RESTful web services
outperform conventional SOAP web services. A recommendation to use RESTful web services on mobile devices has been
concluded from experimental result.

Keywords: Mobile Computing, Mobile Web Services, Web Services Performance, RESTful.

Received April 23, 2009; Accepted June 7, 2009

1. Introduction
Like its predecessors, such as the Common Request
Broker Architecture (CORBA), Remote Method
Invocation (RMI) and Distributed Component Object
Model (DCOM), Web Services [24] is a set of
standards and a programming methods for sharing data
between different software applications, moreover
Web services is a standardized way to distribute
services on the Internet.

Web Services achieves its goal in a technology-
neutral manner; it provides well-defined interfaces for
distributed functionalities, which are independent of
the hardware platform, the operating system, and the
programming language. So distributed functionalities,
or services, which may be running on different
hardware platforms, may be running in different
operating systems, or may be written in different
programming languages, can communicate through
web Service interfaces.

Interoperability of Web Services mainly stems from
its Extensible Markup Language (XML) based open
standards. The Simple Object Access Protocol (SOAP)
[8] is defined in XML. Since it is text-based and self-
describing, SOAP messages can convey information
between services in heterogeneous computing
environments without worrying about conversion
problems, there are many other Web Service
specifications. Two of them, which are based on XML,
are Web Service Description Language (WSDL) [4]
and Universal Description, Discovery and Integration
(UDDI) [23]. WSDL defines a standard method of
describing a Web Service and its capability, and UDDI
defines XML-based-rules for publishing Web Service
information. Messages are exchanged through the

SOAP protocol. SOAP works by exchanging
information using GET/POST over HTTP. This allows
the data to be exchanged regardless of where the client
is in the network.

Just as Web Services technology has become an
industry standard for connecting remote and
heterogeneous resources, mobile devices have become
a vital part of people’s everyday life. People use
mobile devices anytime and anywhere, they may use
their mobiles to check Email, access the Internet, or
run other web applications.

Web Services technology recognizes mobile
computing as an area to which it should expand.
Through integration, Web Services enable pervasive
accessibility by allowing for user mobility as it
overcomes the physical location constraints of
conventional computing. However, mobile computing
also requires a technology that connects mobile
systems to a conventional distributed computing
environment. Web Services may be the perfect
candidate for such connection, since a strong
interoperable capability is the key requirement of the
technology. This will be important for its success when
we consider the fact that the mobile computing
environment is much heterogeneous in terms of
hardware platform, operating system, and
programming language. Thus, the integration of mobile
computing with Web Services technology will give
many advantages to both sides. Mobile devices getting
computationally capable, so mobile devices enabled
with web services can be equal participant of web
services architectures (can be web service client or web
service provider).

However, despite the fact that the condition of
mobile computing has so much improved in recent
years [14], applying current Web Service

Performance Evaluation of RESTful Web Services for Mobile Devices 73

communication models to mobile computing may
result in unacceptable performance overheads. This
potential problem comes from two factors. First, the
encoding and decoding of verbose XML-based SOAP
messages consumes resources. Therefore Web Service
participants, particularly mobile clients, may suffer
from poor performance. Second, the performance and
quality gap between wireless and wired
communication will not close quickly. It is caused by
the mobile environment’s constraints like limited
processor speed, limited battery lifetime, and slow
unreliable and intermit connection.

Mobile web services is an open research area [2, 3,
5, 13, 22, 27]. Several messaging optimization
approaches have been introduced to the literature [20,
26, 15, 16, 17, 18, 19, 25] to address web service
performance overhead for mobile devices. As
described previously, applying current Web Service
communication models to mobile computing may
result in unacceptable performance overheads. The
typical web application that requires the transmission
of four to five times more bytes if implemented as a
Web service compared to the same service
implemented as a traditional dynamic program (e.g.
Active Server Page application) [30] (more details in
state-of-art section).

To the best of our knowledge, the performance of
Representational state transfer (RESTful) web services
[6] has not been evaluated on mobile devices. In this
paper, we evaluate the performance of RESTful web
services compared to the performance of conventional
SOAP web services for mobile devices.
Representational state transfer (REST) is a style of
software architecture for distributed hypermedia
systems such as the World Wide Web. It is a style of
web services use. It attempts to emulate HTTP and
similar protocols by constraining the interface to a set
of well-known, standard (generic) operations (e.g.,
GET, POST, PUT, DELETE). Here, the focus is on
interacting with stateful resources, rather than
messages or operations. RESTful offers a perfectly
good solution for the majority of implementations,
with greater flexibility and lower overhead.

The rest of the paper is organized as follows: in
section 2, we review state-of-arts. Section 3 illustrates
RESTful web services. In section 4, we present the
implementation environment. Performance
benchmarks are presented in section 5. Finally, section
6 concludes the paper status.

2. State-Of-Art
Web Services in a mobile computing environment face
performance-degradation problems similar to those of
the conventional distributed computing environment.
So, a primary research issue in the area of mobile Web
Services is the attempt to provide an efficient message

processing scheme while preserving XML’s
interoperability.

XML overhead investigation has been performed
[22]. The investigation evaluated the overhead of a
regular web application compared to a web service that
serves the same business function. The typical web
application that requires the transmission of four to
five times more bytes if implemented as a Web service
compared to the same service implemented as a
traditional dynamic program (e.g. Active Server Page
application). Figure 1 shows the overhead of ASP and
web service.

Works on solving this problem can be categorized
as either individual message optimization or as
message stream optimization [14]. An individual
message optimization approach produces a simplified,
efficient, and self-contained message, which is a
different format (or representation) to XML. The
messages in the different representation can be
converted to and from the XML format, which is called
roundtripping. For example, Fast Infoset (FI) from Sun
Microsystems [17, 19] and XBIS [20, 25] fall into this
category. On the other hand, the message stream
approach optimizes a whole sequence of related
messages, which we define as a stream. This approach
includes a certain form of negotiation to define stream
characteristics, and optimized message representation
in the stream. Examples of this category include Fast
schema from Sun Microsystems [26, 18] and Handheld
Flexible Representation (HHFR) architecture [15, 16].
Table 1 summarize the categorize XML optimization
efforts.

Figure 1. Overhead of server page and Web service [23]

Table 1. Categorized XML optimization efforts.

Individual Message Approach
(Self-contained message)

Steam of Message Approach
(Non Self-Contained Message)

Fast Infoset of Sun
Microsystems

ExtremeFastWS

XML Schema-Based
Compression

Fast Web Service of Sun Microsystems

XML Infoset Encoding (XBIS) Handheld Flexible Representation
(HHRF)

Another message optimization method is to
compress XML – especially when the CPU overhead
required for compression is less than the network

74 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

latency [11, 22]. The object model for Axis2 [1], called
the Axis Object Model (AXIOM) has an interesting
approach for processing headers. Another message
optimization approach is to attaching binary data to
SOAP message. Examples of this include Message
Transmission Optimization Mechanism (MTOM) [9],
XML-binary Optimized Packaging (XOP) [10] and
Direct Internet Message Encapsulation (DIME) [12].

3. RESTful Web Service
REST [6] is a software application architecture
modeled after the way data is represented, accessed,
and modified on the web. In the REST architecture,
data and functionality are considered resources, and
these resources are accessed using Uniform Resource
Identifiers (URIs), typically links on the web. The
resources are acted upon by using a set of simple, well-
defined operations. The REST architecture is
fundamentally client-server architecture, and is
designed to use a stateless communication protocol,
typically HTTP. In the REST architecture, clients and
servers exchange representations of resources using a
standardized interface and protocol. These principles
encourage REST applications to be simple,
lightweight, and have high performance.

RESTful web services [6] are web applications built
upon the REST architecture. They expose resources
(data and functionality) through web URIs, and use the
four main HTTP methods to create, retrieve, update,
and delete resources. RESTful web services typically
map the four main HTTP methods to the so-called
CRUD actions: create, retrieve, update, and delete.
Table 2 shows a mapping of HTTP methods to these
CRUD actions.

Table 2: HTTP Methods and their Corresponding CRUD Action

HTTP Method CRUD Action
GET Retrieve a resource.

POST Create a resource.
PUT Update a resource.

DELETE Delete a resource.

3.1. RESTful Web Services and Other Styles of
Web Services

REST web services [6] share many characteristics with
other styles of web services like remote procedure call
(RPC) and document-based web services that use
SOAP as the underlying protocol, but also differ in
several important ways. RPC and document-based web
services, like REST web services, are designed to be
lightweight, accessible via URIs, and typically use
HTTP as the underlying protocol. REST and SOAP-
based web services are also platform and programming
language independent, and in both architectures clients
and servers are loosely coupled. That is, clients and
servers interact with a limited set of assumptions about
each other.

REST web services were developed largely as an
alternative to some of the perceived drawbacks of
SOAP-based web services. The SOAP protocol was
designed as a way to make remote procedure calls via
HTTP, using XML as the underlying data format, and
using standard XML types. Eventually the RPC aspects
of SOAP web services were augmented with a
document-based architecture, where clients and servers
exchange XML documents to enact some change in the
client or server applications. As the use of SOAP web
services evolved, the architecture was expanded to deal
with more complicated application functionality, like
security and message reliability. As a result,
developing SOAP web services and clients has become
more complicated.

REST web services aim to be simple, and this is
accomplished by limiting the types of operations one
can perform on a resource. REST founders claimed
that it [6]:

• Provides improved response times and server
loading characteristics due to support for caching.

• Improves server scalability by reducing the need to
maintain communication state.

• Requires less client-side software to be written than
other approaches, because a single browser can
access any application and any resource.

• Depends less on vendor software than mechanisms
which layer additional messaging frameworks on
top of HTTP.

• Provides equivalent functionality when compared to
alternative approaches to communication.

• Does not require a separate resource discovery
mechanism, due to the use of hyperlinks in content.

• Provides better long-term compatibility and
evolvability characteristics than RPC. This is due to:

• The capability of document types such as HTML to
evolve without breaking backwards- or forwards-
compatibility.

• The ability of resources to add support for new
content types as they are defined without dropping
or reducing support for older content types (MIME
types).

4. Implementation Details and
Benchmarking Environment

To evaluate the performance of RESTful web services
against conventional SOAP web services, we
implement a RESTful web service and a conventional
web service and develop a web service client on a
mobile device for each class of web services. Next, we
shall illustrate the service implementation, the client
implementation and emulator configuration, and the
benchmarking environment.

Performance Evaluation of RESTful Web Services for Mobile Devices 75

4.1. Service Implementation
We implement RESTful and conventional SOAP web
service and host them on the Glassfish application
server. Glassfish [7] is a web service framework
developed at Sun Microsystems. The service provider,
Glassfish Web Service container runs on IBM
compatible PC with 3.2 GHz processor and 1 GB
RAM, where Windows XP professional with Service
Pack 2 operates. And mobile applications (service
client) implemented using J2ME and runs on Sun
Mobile Emulator (Sun Java™ Wireless toolkit 2.5.2
for CLDC [21]) which was configured to emulate a
VM speed of 512 bytecodes/millisecond, and a
network throughput of 9600 bits/second. Emulators
profile is MIDP 2.1 and its configuration is CDLC 1.1.
The time stamps are measured on mobile side (a
session initiator) using System.currentTimeMillis() of
MIDP 2.1 - CLDC 1.1 that returns 10 milliseconds
precision time stamps. Figure 2 depicts the Emulated
experiment environment. Sun Mobile Emulator is
depicted in the appendix A.

Figure 2. Emulated Experiment Environment for Performance
Evaluation

4.2 Benchmark Configurations
We implement two benchmarks using two different
data types as parameters to the web service: float data
type, and string data type. We measure a total session
time and a message size of service call. Benchmarking
web services are listed below:

4.2.1. String Array Concatenation:

The first benchmark web service is a string array
concatenation service that produces a single
concatenated string of all string in a message (a pure-
text data domain). We measure the response time of

the service call. It includes the communication set-up
latency, the transmission overhead, and the
concatenation operation time. The benchmark focuses
on the performance effect on runtime system by
changing a number of array elements (size of array) in
a message.

4.2.2. Floating Number Array Addition

The second service we benchmark is floating numbers
addition service that returns a summation of all float
numbers of an array in a message. The float numbers
are representing a float data domain. It is remarkable
that conventional Web Services message processing
includes a float-to-text conversion that consumes many
processing cycles. In addition to service response time,
the SOAP application contains an OS level float to-
text conversion overhead. Like string concatenation
service benchmarking, we change the size of the array
to observe the performance state change in the system.

5. Experimental Results
Table 3 shows the benchmarking results of the string
concatenation and float numbers addition web services
which are depicted in Figures 3, and 4. Figure 3 shows
the messages size in bytes for string concatenation and
float addition services. The message size of RESTful
web service is smaller than messages of Conventional
SOAP web service. The figures show higher advantage
of using RESTful web service. Figure 4 shows the
messages response time in milliseconds for string
concatenation and float addition services. The response
time of RESTful web service is smaller than messages
of Conventional SOAP web service. The Figures show
higher advantage of using RESTful web service. The
gap is very large between the response time of
RESTful and the conventional SOAP web service.

Less Message size and response time means less
processing and transmission time which leads to lower
power consumption, and faster web service. This
satisfies the physical constraints of mobile devices and
achieves the quality of service goal. These results
support that RESTful web service is recommended for
mobile devices. Therefore, REST offers a perfectly
good solution for the majority of implementations with
greater flexibility and lower overhead

Table 3. Service Response Time (Milliseconds) and Message Size (Bytes) of String Concatenation and float addition service.

Message Size (byte) Time (Milliseconds)

SOAP/HTTP REST (HTTP) SOAP/HTTP REST (HTTP)

Number
of array
elements

String
Concatenation

Float
Numbers
Addition

String
Concatenation

Float
Numbers
Addition

String
Concatenation

Float
Numbers
Addition

String
Concatenation

Float
Numbers
Addition

2 351 357 39 32 781 781 359 359
3 371 383 48 36 828 781 344 407
4 395 409 63 35 828 922 359 375
5 418 435 76 39 969 1016 360 359
6 443 461 93 43 875 953 359 359
7 465 487 104 47 875 875 469 360
8 493 513 127 51 984 875 437 344

76 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

Figure 3. RESTful vs. SOAP message sizes of string concatenation and float addition service.

Figure 4. RESTful vs. SOAP Response time of string concatenation and float addition service.

6. Conclusion
We have evaluated a RESTful web service for mobile
devices, where we developed RESTful and
conventional SOAP benchmarking web service.
Benchmarking includes string concatenation and float
number addition web services. The performance
evaluation results show the advantages of using
RESTful web services over conventional web services
for mobile devices. Advantages include less message
sizes and response time. Results of performance
comparison between conventional SOAP and RESTful
show the obvious high performance RESTful over
SOAP. Therefore, RESTful offers a perfectly good
solution for the majority of implementations, with
higher flexibility and lower overhead.

Acknowledgments
We would like to thank Dr. Rebhi S. Baraka for his
comments.

References
[1] Apache AXIS2, http://ws.apache.org/axis2.
[2] Berger, S., McFaddin, S., Narayanaswami C.,

Raghunath M., “Web services on mobile devices-
implementation and experience," Proc. Of 5th
IEEE Workshop on Mobile Computing Systems
and Applications, 2003.

[3] Cheng S., Liu J., Kao J., Chen C., “A New
Framework for Mobile Web Services," Proc. of
the 2002 Symposium on Applications and the
Internet (SAINT.02w).

[4] Chinnici R., Moreau J., Weerawarana S., “Web
Services Description Language (WSDL) Version
2.0 Part 1: Core Language," W3C
Recommendation, June 2007

[5] Chu H, You C, Teng C, “Challenges: wireless
Web services,” Proc. Of 10th International
Conference On Parallel and Distributed Systems,
2004 (ICPADS’04).

[6] Fielding R., “Architectural Styles and the Design
of Network-based Software Architectures," PhD
Dissertation, University of California, Irvine,
California, USA, 2000.

[7] GlassFish - Open Source Application Server
https://glassfish.dev.java.net

[8] Gudgin M., Hadley M., Mendelsohn N., Moreau
J., and Nielsen H., “SOAP Version 1.2 Part 1:
Messaging Framework," W3C Recommendation,
June 2003.

[9] Gudgin M., Mendelsohn N., Nottingham M, and
Ruellan H, “SOAP Message Transmission
Optimization Mechanism (MTOM),” W3C
Recommendation, 2005.

[10] Gudgin M., Mendelsohn N., Nottingham M, and
Ruellan H, “XML-binary Optimized Packaging
(XOP),” W3C Recommendation, 2005.

Performance Evaluation of RESTful Web Services for Mobile Devices 77

[11] Mani A. and Nagarajan A. “Understanding

quality of service for Web services," http://www-
106.ibm.com/developerworks/library/ws-
quality.html, 2002.

[12] Nielsen H., Sanders H., Butek R., and Nash S.,
“Direct Internet Message Encapsulation,”
Internet-Draft, June 2002 expires December
2002, http://www.ietf.org/internet-drafts/draft-
nielsen-dime-02.txt.

[13] Oh S. “HHFR: A new architecture for Mobile
Web Services Principles and Implementations,”
Technical paper, 2005

[14] Oh S. “Web Service Architecture For Mobile
Computing,” PhD Dissertation, University of
Indiana, Irvine, USA, 2006.

[15] Oh S., Bulut H., Uyar A., Wu W., and Fox G.C.,
“Optimized Communication using the SOAP
Infoset for Mobile Multimedia Collaboration,” In
Proceedings of The Fifth International
Symposium on Collaborative Technologies and
Systems (CTS2005), St. Louis, Missouri, USA,
2005.

[16] Oh S., Fox G., “Optimizing Web Service
Messaging Performance in Mobile Computing,”
Community Grids Laboratory Technical Paper,
2006.

[17] Sandoz P., Pericas-Geertsen S., “Fast Infoset @
Java.net,” In Proc. of XTech 2005, Amsterdam,
Netherands, 2005.

[18] Sandoz P., Pericas-Geertsen S., Kawaguchi K.,
Hadley M, and Pelegri-Llopart E., “Fast Web

Services,” Java developer’s Journal Technical
Article, 2003.

[19] Sandoz P., triglia A., and Pericas-Geertsen S.,
“Fast Infoset,” Java developer’s Journal
Technical Article, 2004.

[20] Sosnoski D., “Improve XML Transport
performance Part 1 and 2,” IBM developersWork
Article, June 2004. http://www-
128.ibm.com/developerworks/xml/library/x-
trans1.html.

[21] Sun Java Wireless Toolkit for CLDC:
http://java.sun.com/products/sjwtoolkit.

[22] Tian M, Voigt T, Naumowicz , Ritter H,
Schiller J., “Performance Considerations for
Mobile Web Services," Elsevier Computer
Communications Journal, Volume 27, Issue 11 ,
Pages 1097-1105, 2004.

[23] UDDI OASIS Standard: http://uddi.xml.org.
[24] W3C Web Services Activity

http://www.w3.org/2002/ws/.
[25] XBIS XML Information Set Encoding,

http://xbis.sourceforge.net/.
[26] XMLBeans, Apache XML Project,

http://xmlbeans.apache.org/.
[27] Zahreddine W, Mahmoud Q, “An agent-based

approach to composite mobile Web services,”
Proc. of the 19th International Conference on
Advanced Information Networking and
Applications (AINA’05), 2005.

Appendix A: Sun Emulator Configurations

Figure A.1: Sum Mobile Emulator (Sun Java Wireless toolkit)

78 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

Figure A.2: Sun Java Wireless toolkit preferences

Hatem Hammad was born in
Rafah, Palestine on August 31,
1961; he received the PhD in
informatics from Technical
University Darmstadt, Germany in
1995.from 1995 till now he is
being a lecturer in computer

engineering Dept. Islamic University of Gaza. His
research interests include Web technologies and
mobile computing.

Motaz Saad has received his BSc
in Information Technolology in
2006 from the Islamic university of
Gaza, Palestine, currently working
as teaching assistant at the same
university since 2006. He is MSc
student in computer engineering at
the same university. His area of

research is Data Mining , Web Services, Natural
Language Processing, and Open Source Software.

Ramzi Abed was born in Jeddah,
Saudi Arabia, on July, 1976, he
received the B. Sc. Degree in Math
and Computer Science from the
Islamic University of Gaza,
Palestine in 1999. He is an M. Sc.
Student in Computer Engineering at

the Islamic University of Gaza. From 1999 till now
he is being a teaching assistant in Information
Technology Faculty, the Islamic University of Gaza.
His research interests include Information Security,
Network Security, and Web Services Technologies
and Security. Abed gets an MCP certificate.

