
Expert Systems With Applications 96 (2018) 271–283

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Closed frequent similar pattern mining: Reducing the number of

frequent similar patterns without information loss

Ansel Y. Rodríguez-González

a , ∗, Fernando Lezama

a , Carlos A. Iglesias-Alvarez

b ,
José Fco. Martínez-Trinidad

a , Jesús A. Carrasco-Ochoa

a , Enrique Munoz de Cote

a

a Department of Computer Sciences, Institute of Astrophysics, Optics and Electronics (INAOE), Luis Enrique Erro 1, Tonantzintla, Puebla, 72840, Mexico
b Faculty of Mathematics and Computer Science, University of Havana, San Lazaro and L, Plaza de la Revolución, Havana, Cuba

a r t i c l e i n f o

Article history:

Received 7 December 2016

Revised 7 December 2017

Accepted 8 December 2017

Available online 9 December 2017

Keywords:

Data mining

Frequent patterns

Mixed data

Similarity functions

Downward closure

a b s t r a c t

Frequent pattern mining is considered a key task to discover useful information. Despite the quality of

solutions given by frequent pattern mining algorithms, most of them face the challenge of how to re-

duce the number of frequent patterns without information loss. Frequent itemset mining addresses this

problem by discovering a reduced set of frequent itemsets, named closed frequent itemsets , from which the

entire frequent pattern set can be recovered. However, for frequent similar pattern mining , where the num-

ber of patterns is even larger than for Frequent itemset mining, this problem has not been addressed yet.

In this paper, we introduce the concept of closed frequent similar pattern mining to discover a reduced set

of frequent similar patterns without information loss. Additionally, a novel closed frequent similar pattern

mining algorithm, named CFSP-Miner , is proposed. The algorithm discovers frequent patterns by travers-

ing a tree that contains all the closed frequent similar patterns. To do this efficiently, several lemmas to

prune the search space are introduced and proven. The results show that CFSP-Miner is more efficient

than the state-of-the-art frequent similar pattern mining algorithms, except in cases where the number

of frequent similar patterns and closed frequent similar patterns are almost equal. However, CFSP-Miner is

able to find the closed similar patterns, yielding a reduced size of the discovered frequent similar pattern

set without information loss. Also, CFSP-Miner shows good scalability while maintaining an acceptable

runtime performance.

© 2017 Elsevier Ltd. All rights reserved.

1

A

p

f

t

b

r

T

h

(

m

m

2

f

f

O

&

M

2

b

c

w

t

o

R

V

A

Y

s

f

h

0

. Introduction

Frequent pattern mining (Agrawal, Imieli ́nski, & Swami, 1993;

grawal, Srikant et al., 1994) is a technique that consists of finding

atterns (i.e., feature sets with their corresponding values) that

requently occur (more than or equal to a minimum frequency

hreshold) in a dataset. It is considered a key task in data mining

ecause of its application to discover useful information, such as

isk factors (Li, Fu, & Fahey, 2009; Li et al., 2005; Nahar, Imam,

ickle, & Chen, 2013), user’s profiles (Chiu, Yeh, & Lee, 2013),

uman behavior (Wen, Zhong, & Wang, 2015), malicious software

 Fan, Ye, & Chen, 2016) among others. In addition, Frequent pattern

ining can be used as a previous or internal step for other data

ining tasks, like association rule mining (Alatas, Akin, & Karci,

008; Kalpana & Nadarajan, 2008; Lopez, Blanco, Garcia, Cano,
∗ Corresponding author.

E-mail addresses: ansel@ccc.inaoep.mx (A.Y. Rodríguez-González),

.lezama@inaoep.mx (F. Lezama), ciglsias@gmail.com (C.A. Iglesias-Alvarez),

martine@inaoep.mx (J.Fco. Martínez-Trinidad), ariel@inaoep.mx (J.A. Carrasco-

choa), jemc@inaoep.mx (E.M. de Cote).

t

m

b

2

R

ttps://doi.org/10.1016/j.eswa.2017.12.018

957-4174/© 2017 Elsevier Ltd. All rights reserved.
 Marin, 2008), classification(Hernández-León, Carrasco-Ochoa,

artínez-Trinidad, & Hernández-Palancar, 2012; Nguyen & Nguyen,

015) and clustering (Beil, Ester, & Xu, 2002).

Since 1990, most of the frequent pattern mining algorithms were

ased on the exact matching of boolean features to compare and

ount patterns. This subclass of frequent pattern mining algorithms

as called frequent itemset mining (considered as the tradi-

ional approach for frequent pattern mining). However, real life

bjects, such as objects in sociology (Ruiz-Shulcloper & Fuentes-

odríguez, 1981), geology (Gómez-Herrera, Rodríguez-Morn,

alladares-Amaro et al., 1994), medicine (Ortiz-Posadas, Vega-

lvarado, & Toni, 2009) or information retrieval (Baeza-

ates, Ribeiro-Neto et al., 1999)), are rarely equal or they can be de-

cribed by non boolean features. Thus, similarity functions different

rom the exact matching were proposed to compare object descrip-

ions giving rise to a new approach named frequent similar pattern

ining which can handle datasets containing non boolean features

y using similarity functions (Danger, Ruiz-Shulcloper, & Llavori,

004; Rodríguez-González, Martínez-Trinidad, Carrasco-Ochoa, &

uiz-Shulcloper, 2008; 2011; 2013). This approach produces pat-

https://doi.org/10.1016/j.eswa.2017.12.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.12.018&domain=pdf
mailto:ansel@ccc.inaoep.mx
mailto:f.lezama@inaoep.mx
mailto:ciglsias@gmail.com
mailto:fmartine@inaoep.mx
mailto:ariel@inaoep.mx
mailto:jemc@inaoep.mx
https://doi.org/10.1016/j.eswa.2017.12.018

272 A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283

Fig. 1. From frequent itemset mining to closed frequent similar pattern mining.

T

2

t

p

f

w

f

(

G

o

d

(

a

2

s

M

w

f

h

m

f

(

fi

m

i

i

r

t

i

fi

d

T

b

i

s

s

d
terns which can not be found by those algorithms based on exact

matching. The frequent patterns found using a similarity function

are named frequent similar patterns (Rodríguez-González, Martínez-

rinidad, Carrasco-Ochoa, & Ruiz-Shulcloper, 2013).

Despite the quality of solutions given by a frequent itemset

mining algorithm or a frequent similar pattern algorithm, a critical

drawback to both these approaches is that, although a complete

set of frequent itemsets or frequent similar patterns can be found,

the number of frequent patterns is often too big (Burdick, Calim-

lim, & Gehrke, 2001; Hu, Sung, Xiong, & Fu, 2008; Pei, Han, Mao

et al., 20 0 0; Rodríguez-González et al., 2013; Zaki & Hsiao, 2002).

It is helpful, therefore, to obtain a reduced set of all the

frequent patterns without information loss (i.e., from which the

entire frequent pattern set can be recovered). One way to do that,

is through the use of closed frequent itemsets mining (Prabha, Shan-

mugapriya, & Duraiswamy, 2013). Closed frequent itemsets mining

algorithms define that a frequent itemset is closed if it has no

super-patterns with the same frequency, and use this definition

to find the closed frequent itemsets. From such closed itemsets,

the complete set of frequent itemsets can be generated without

information loss. The so-called closed frequent itemsets mining

algorithms also have more efficient runtimes than frequent itemset

mining algorithms (Pei et al., 20 0 0; Uno, Asai, Uchida, & Arimura,

2003; Zaki & Hsiao, 2002).

However, the concept of a closed patterns has not been

exploited for the frequent similar patterns to the best of our

knowledge. In this paper, we introduce the concept of a closed

frequent similar pattern and a novel closed frequent similar pattern

mining algorithm, named CFSP-Miner , that finds a reduced closed

set of frequent similar patterns without information loss (see

Fig. 1 to see the scope of our work). The results show that this

proposed algorithm, CFSP-Miner , has more efficient runtimes than

the state-of-the-art frequent similar pattern mining algorithms, ex-

cept when the number of frequent similar patterns and the closed

frequent similar patterns are almost equal. From the scalability

point of view, the CFSP-Miner algorithm also finds the closed

frequent similar patterns in an acceptable runtime, regardless of

size.

The outline of this paper is as follows. In Section 2 related work

is reviewed. Section 3 provides basic concepts. In Section 4 several

concepts are introduced and redefined as a result of combining

frequent similar pattern and closed pattern concepts. In Section 5 a

novel algorithm for mining closed frequent similar patterns is pro-

posed. Section 6 presents the experimental results and discussion,

and finally, in Section 7 some conclusions and future work are

discussed.
R
. Related work

The frequent pattern mining problem has attracted the at-

ention of the data mining research community because of its

otential application in many different domains. One research line

ocuses on discovering frequent patterns in mixed data (datasets

hose objects are described by numerical and non-numerical

eatures) using similarity functions to compare and count objects

frequent similar patterns) (Danger et al., 2004; Rodríguez-

onzález et al., 2008; 2013). Another research line focuses on

btaining a reduced set of all the frequent patterns in boolean

atasets without information loss (closed frequent itemsets)

 Prabha et al., 2013; Uno et al., 2003; Zaki & Hsiao, 2002).

The results of these research lines related to the current work

re presented in the following subsections.

.1. Frequent similar pattern mining

In the literature there are two algorithms for mining frequent

imilar patterns: ObjectMiner (Danger et al., 2004) and STreeDC-

iner (Rodríguez-González et al., 2013). Both algorithms find the

hole set of frequent similar patterns by using boolean similarity

unctions. The discovered set of patterns usually contains patterns

idden to the traditional approach.

ObjectMiner (Danger et al., 2004) was the first algorithm for

ining frequent similar pattern that used similarity functions dif-

erent from equality, and it was inspired by the Apriori algorithm

 Agrawal et al., 1994). ObjectMiner works by following a breadth

rst search strategy. Given a dataset D, a similarity function, and a

inimum frequency threshold, ObjectMiner finds the frequent sim-

lar patterns in D with only one feature. The frequency of patterns

s computed by adding the occurrences of itself and the occur-

ences of its similar patterns. Each pattern with a frequency greater

han the minimum frequency threshold is consider a frequent sim-

lar pattern. In the iteration k (starting with k = 2) ObjectMiner

nds the frequent similar patterns in D with k features. This is

one by merging the frequent similar patterns with k − 1 features.

his process finishes after no frequent similar patterns are found.

The main weakness of ObjectMiner , is that the similarity

etween a pattern and its repetitions is computed in each

teration of the algorithm, causing an additional and unneces-

ary computation. ObjectMiner also stores the set of all similar

ubdescriptions (including its repetitions) of each frequent sub-

escription, which slows the performance as was shown in

odríguez-González et al. (2013) .

A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283 273

a

w

o

a

a

a

f

f

c

s

t

t

p

s

w

t

e

d

2

t

t

a

r

t

d

i

p

m

p

t

p

c

d

i

i

d

u

b

s

i

d

t

n

i

c

f

t

e

f

p

(

P

(

&

p

V

A

g

o

3

p

F

p

p

n

s

i

i

D

t

D

D

d

s

D

a

{

T

a

D

i

o

A

D

a

T

D

p

D

i

P

w

A

b

D

f

t

s

D

D

O

D

t

F

STreeDC-Miner (Rodríguez-González et al., 2013) is another

lgorithm for mining frequent similar patterns. STreeDC-Miner

orks by following a depth first search strategy, using a total

rder defined over the feature set in D . STreeDC-Miner starts

nalyzing each set with only one feature A , and recursively adds

 new feature to this set which is after the last feature in the set

ccording to the defined order. The base case in the recursion is

ulfilled when no more frequent similar patterns are discovered

or the current set of features under analysis. In order to efficiently

ompute the frequency of patterns, STreeDC-Miner uses a tree

tructure called STree . Each leaf in a STree stores the repetitions of

he pattern under this branch and also stores the similarity among

his pattern and its similar patterns. The similarity between two

atterns in STree is only computed if their subpatterns in STree are

imilar, and if one of them is a frequent similar pattern. In this

ay STreeDC-Miner reduces the computational effort to compute

he frequency of each pattern by reducing the similarity function

valuations. However, STreeDC-Miner like ObjectMiner has the same

rawback of finding too many frequent similar patterns.

.2. Closed frequent itemset mining

The closed frequent itemset mining consists in finding only

hose frequent itemsets where there is not another itemset con-

aining it with the same frequency (Prabha et al., 2013). The

dvantage of computing the closed frequent itemsets is that they

etains all the information needed to obtain all the frequent pat-

erns and their exact frequencies without the need of the original

ata set. Two of the first and most referenced closed frequent

temset mining algorithms are Closet and CHARM .

Closet (Pei et al., 20 0 0) is based on: i) compressing frequent

atterns in tree structure containing the frequent patterns for

ining closed itemsets without candidate generation, ii) com-

ressing a single path in the tree to do a fast identification of

he frequent closed itemsets, iii) performing a partition-based

rojection mechanism for scalable mining in large databases.

Closet uses a divide and conquer method for mining frequent

losed patterns. First, frequent items are found and sorted in

escending frequency order. Then, the search space is divided

nto non-overlapping subsets and each subset of frequent closed

temsets is mined recursively by constructing related conditional

atabases.

CHARM (Zaki & Hsiao, 2002), on the other hand, uses a bottom

p approach for mining the closed frequent itemsets. It explores

oth itemset and transaction spaces, through a dual itemset-tidset

earch tree, using an efficient hybrid search that skips many levels

n the tree during the search. CHARM also uses a technique called

iffsets to reduce the memory footprint of intermediate compu-

ations. Finally, it uses a fast hash-based approach to remove any

on-closed sets found during the search.

LCM (Uno et al., 2003) is another closed frequent itemsets min-

ng algorithm. That defines a parent-child relationship between

losed patterns. It was proven that each parent-child relationship

orms a tree from which all closed patterns can be found by

raversing it. LCM , also introduced an efficient way to traverse

ach tree in polynomial time with respect to the amount of closed

requent itemsets in the datasets.

From CHARM, Closet and LCM , other algorithms have also been

roposed for closed frequent itemsets mining such as COBBLER

 Pan, Tung, Cong, & Xu, 2004), TD-Close (Han & Shao, 2006),

GMiner (Moonesinghe, Fodeh, & Tan, 2006), Patricia Tree Close

 Nezhad & Sadreddini, 2007), ICMiner (Lee, Wang, Weng, Chen,

 Wu, 2008), TTD-Close (Liu et al., 2009) CFIM-P (Nair & Tri-

athy, 2011), DBV-Miner (Vo, Hong, & Le, 2012), NAFCP (Le &

o, 2015), and more recently BVCL (Hashem, Karim, Samiullah, &

hmed, 2017).
Unlike all these previous algorithms, our work introduces an al-

orithm for mining closed frequent patterns in datasets where the

bjects are described by numerical and non-numerical features.

. Basic concepts and notations

In this Section, some concepts related to frequent similar

attern mining and closed frequent pattern mining are introduced.

irst, common concepts are described. Secondly, frequent similar

attern mining concepts are enumerated. Thirdly, closed frequent

attern mining concepts are also enumerated.

Consider a dataset as a tuple D = (O, A , V, P) where O is a

on-empty and finite set of objects, A is a non-empty and finite

et of features, V is a non-empty and finite set of values and P

s an application such that P : (O × A) −→ V . For simplicity, O [A]

s denoted as P(O, A) , ∀ O ∈ O, ∀ A ∈ A .

efinition 1 (Domain of a feature) . The Domain of a fea-

ure A ∈ A is the application Domain : A −→ 2 V defined as

omain (A) = { V ∈ V | ∃ O ∈ O : V = O [A] } .
efinition 2 (Pattern) . A pattern in D is a pair T = (O, A T) ∈

(O × { 2 A \{}}) . T.O denotes O and T . A denotes A T . Also, T
enotes the set of all patterns in D . T is a non-empty and finite

et. Given two patterns T 1 ∈ T and T 2 ∈ T , T 1 = T 2 iff T 1 . A = T 2 . A
and ∀ A ∈ T 1 . A ; T 1 .O [A] = T 2 .O [A] .

efinition 3 (Super-pattern) . A SupPatterns of a pattern is the

pplication SupPatterns : T −→ 2 T defined as: SupPatterns (T) =
 T sup ∈ T | T . A ⊆ T sup . A and T sup .O [A] = T .O [A] ∀ A ∈ T . A} . If

 sup ∈ SupPatterns (T); then we say that T sup is a super-pattern of T

nd T is sub-pattern of T sup .

efinition 4 (Well-order of the features) . A well order can be set

n A due it is a is a non-empty and finite set. ≤A denotes a total

rder that defines the well order. If A 1 ≤A A 2 and A 1 	 = A 2 then

 1 < A A 2 .

efinition 5 (Prefix) . The prefix of a pattern until a feature is the

pplication P re f ix : (T × A) −→ T defined as: P re f ix (T , A) = T pr ∈
 | T pr .O = T .O and ∀ A pr ∈ T pr . A A pr ∈ T . A and A pr ≤A A .

efinition 6 (Last feature) . The last feature of a patterns is the ap-

lication T ail : T −→ A defined as: T ail(T) = A u ∈ T . A | ∀ A ∈ T . A
A ≤A A u .

efinition 7 (Previous feature) . The previous feature of a feature

s the application P re v ious : A −→ (A ∪ { A 0 }) defined as:

 re v ious (A) =

{
A 0 if ∀ A

′ ∈ A A ≤A A

′
P re v ious 0 (A) otherwise

(1)

here A 0 is a special feature, such that A 0 / ∈ A . P re v ious 0 (A) =
 pre v ∈ A | ∀ A

′ ∈ A A m

< A A and A

′ ≤A A pre v

The frequent similar pattern mining concepts are described

elow.

efinition 8 (Boolean similarity function) . A Boolean similarity

unction in D is an application F : (T × O) −→ { True,False}, such

hat ∀ T ∈ T , O ∈ O ; T .O = O ⇒ F (T , O) = T rue . B denotes the

et of all Boolean similarity functions that can be defined in D.

efinition 9 (Occurrences) . The occurrences of a pattern in

 is the application Occurrences F : T −→ 2 O , such that

ccurrences F (T) = { O ∈ O | F (T , O) = T rue } .
efinition 10 (Frequency) . The frequency of a pattern in D is

he application F requency F : T −→ { 1 , 2 , . . . , ‖O‖} , such that

 requency (T) = ‖ Occurrences (T) ‖ .
F F

274 A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283

D

q

o

1

u

g

c

a

c

a

S

{

{

a

T

o

T

D

S

O

d

d

T

t

T

f

C

o

(
Definition 11 (Frequent Similar Pattern) . A Pattern T ∈ T is a fre-

quent similar pattern in D if Frequency F (T) ≥ M where M is a mini-

mum threshold. M denotes the domain of M , M = { 1 , 2 , . . . , ‖O‖}
. Also, S denotes the set of all frequent similar patterns in D.

With the above definitions, a Frequent Similar Pattern Mining

problem can be stated as follows: Given a dataset D = (O, A , V, P) ,

F ∈ B and M ∈ M , the frequent similar pattern mining problem

consists in finding the set of all frequent similar patterns S .

However, pruning the search space of frequent similar patterns

is needed for frequent similar pattern mining. Some definitions

useful to this end are:

Definition 12 (Non-increasing monotonic boolean similarity func-

tion) . F is a non-increasing monotonic boolean similarity function

iff ∀ O, T, T sup ; O ∈ O ; T ∈ T ; T sup ∈ SupPatterns (T) [F (T , O) = F alse]

⇒ [F (T sup , O) = F alse] . N denotes the set of all non-increasing

monotonic boolean similarity functions that can be defined in D.

Sample 1. Sample of non-increasing monotonic boolean similarity

function: Equality

F eq (T , O) =

{
T rue if ∀ A ∈ T . A T .O [A] = O [A]
F alse otherwise

(2)

Sample 2. Sample of non-increasing monotonic boolean similarity

function: Product

F αprod (T , O) =

{
T rue if

∏

A ∈ T. A C A (T .O [A] , O [A]) ≥ α
F alse otherwise

(3)

where C A is defined ∀ A ∈ A as C A : (Domain (A) × Domain (A)) −→
[0 , 1]

Lemma 1 (Monotony of the frequency) . ∀ T, T sup ; T ∈ T ;

T sup ∈ SupPatterns (T) Frequency F (T) ≥ Frequency F (T sup)

The proof of this Lemma is a direct consequence of F ∈ N

(Rodríguez-González et al., 2013).

Lemma 2 (Downward closure property) . ∀ T ∈ T if T / ∈ S then

∀ T sup ∈ SupPatterns (T) T sup / ∈ S .

The proof of this Lemma is a direct consequence of the

monotony of the frequency (Rodríguez-González et al., 2013).

Finally, two important closed frequent pattern mining concepts

(i.e., Closed Pattern and Closure) are formalized using the same

notation.

Definition 13 (Closed Pattern) . Given a dataset D = (O, A , V, P)

and F = F eq , a pattern T e ∈ T is a closed pattern in D if

∀ T eSup ∈ SupPatterns (T e) Frequency F (T eSup) < Frequency F (T e). E eq

denotes the set of all closed patterns in D using F = F eq .

Definition 14 (Closure) . Given a dataset D = (O, A , V, P) and

F = F eq , the closure is the application Closure : T −→ E eq ,

such that Closure (T) = T cl ∈ E eq | T cl ∈ SupPatterns (T) y

F requency F (T) = F requency F (T cl) .

4. Combining frequent similar pattern and closed frequent

similar pattern concepts

In this section, closed pattern concepts for frequent itemset

mining will be extended for frequent similar pattern mining .

Definition 15 (Closed Similar Pattern) . Given a dataset D =
(O, A , V, P) and F ∈ N , a closed similar pattern in D is a pattern

T e ∈ T | ∀ T eSup ∈ SupPatterns (T e) Frequency F (T eSup) < Frequency F (T e),

where E denotes the set of all closed similar pattern in D using F .

Definition 16 (Closure’) . The closure’ is the application Closure ′ :
T −→ E, such that Closure ′ (T) = T cl ∈ E | T cl ∈ SupPatterns (T)

and F requency (T) = F requency (T) .
F F cl
efinition 17 (Closed Frequent Similar Pattern) . The closed fre-

uent similar pattern mining problem consists in finding the set

f all frequent similar patterns in S ∩ E .

Definitions 15 and 16 are extensions of Definitions. 13 and

4 from Section 3 , and by changing F = F eq to F ∈ N allows the

se of any non-increasing monotonic boolean similarity function

iven as a result Definition 17 .

Notice that, if Definition 16 is used in certain datasets with

ertain similarity functions, then the images of some patterns

re not univocally defined. The following two samples show the

ontradictions that arise using Definition 16 given a dataset D and

 non-increasing monotonic boolean similarity function F ∈ N .

ample 3. Given a dataset D = (O, A , V, P) , such that O =
 O 1 , O 2 } , A = { X, Y } , V = { x, y 1 , y 2 } and P is defined as follow :

P X Y

O 1 x y 1
O 2 x y 2

It can be noticed that Domain (X) = { x } and Domain (Y) =
 y 1 , y 2 } . Also, given F ∈ N , F = F 1

prod
(F α

prod
defined on Sample 2)

nd the following comparison criteria:

C X x

x 1

C Y y 1 y 2
y 1 1 1

y 2 1 1

Consider the patterns T 1 = (O 1 , { X}) , T 2 = (O 1 , { X, Y }) and

 3 = (O 2 , { X, Y }) . Notice that T 2 and T 3 are super-patterns

f T 1 and both are closed similar patterns. Therefore, T 2 and

 3 can be the image of T 1 for the application Closure ′ (from

efinition 16) which is a contradiction of its own definition.

ample 4. Given a dataset D = (O, A , V, P) , such that

 = { O 1 , O 2 } , A = { X, Y, Z} , V = { x, y 1 , y 2 , z 1 , z 2 } and P is

efined as follow:

P X Y Z

O 1 x y 1 z 1
O 2 x y 2 z 2

It can be noticed that Domain (X) = { x } , Domain (Y) = { y 1 , y 2 }
and Domain (Z) = { z 1 , z 2 } . Also, given F ∈ N , F = F 0 . 5

prod
(F α

prod

efined on Sample 2) and the following comparison criteria:

C X x

x 1

C Y y 1 y 2
y 1 1 0.5

y 2 0.5 1

C Z z 1 z 2
z 1 1 0.5

z 2 0.5 1

Consider the patterns T 1 = (O 1 , { X}) , T 2 = (O 1 , { X, Y }) ,
 3 = (O 2 , { X, Y }) , T 4 = (O 1 , { X, Z}) and T 5 = (O 2 , { X, Z}) . Notice

hat F requency F (T 1) = 2 , F requency F (T 2) = 2 , F requency F (T 3) = 2 ,

F requency F (T 4) = 2 and F requency F (T 5) = 2 . Also, T 2 , T 3 , T 4 and

 5 are super-patterns of T 1 and are closed similar patterns. There-

ore, T 2 , T 3 , T 4 and T 5 can be the image of T 1 for the application

losure ′ (Definition 16) resulting again in a contradiction of its

wn definition.

The above samples suggest a new Closure definition

 Definition 21) exclusive for frequent similar patterns . To that

A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283 275

e

r

D

F

S

F

D

d

c

D

D

t

L

P

o

S

D

X

o

f

1

1

1

1

i

D

b

t

E

S

S

i

l

L

D

P

L

P

5

m

h

r

t

i

a

D

w

E

D

p

F

F

w

F

S

D

F ather((O , { X, Y, Z})) = (O , { X, Y })
nd, the application FClosure is introduced jointly with some

elated lemmas as a consequence.

efinition 18 (FClosure) . The FClosure is the application

 Closure : T −→ 2 E , such that F Closure (T) = { T e ∈ E | T e ∈
upPatterns (T) , F requency F (T e) = F requency F (T) } .

As example, Definition 18 applied on Sample 4 gives as a result

 Closure (T 1) = { T 2 , T 3 , T 4 , T 5 } .
efinition 19 (Well-order in the domain of features) . Given a

ataset D = (O, A , V, P) , ∀ A ∈ A a well-order over Domain (A)

an be established due to it is a non-empty and finite set.

≤ A denotes a total order that defines the well-order over

omain (A). If A v 1 ≤ A A v 2 and A v 1 	 = A v 2 then A v 1 < A A v 2

efinition 20 (≤ L Relation) . ≤ L Relation is a binary relation in T ,
given that T 1 ≤ L T 2 iff T 2 ∈ SupPatterns (T 1) or ∃ A di f ∈ T 1 . A , such

hat:

• T 1 .O [A di f] < A di f
T 2 .O [A di f] .

• ∀ A m

∈ T 2 . A | A m

< A A di f A m

∈ T 1 . A and T 1 .O [A m

] = T 2 .O [A m

] .

emma 3 (Lexicographic order) . ≤ L defines a well-order in T .

roof. ∀ A ∈ A , (A , ≤A) and (Domain (A), ≤ A) are well-

rdered sets. Therefore ≤ L defines a lexicographic order in T
(Weisstein, 2002). �

ample 5 (Sample of lexicographic order) . Given the dataset

 and the similarity function F of Sample 4 , ≤A , such that

 < A Y < A Z, a total order ≤ Y , such that y 1 ≤ Y y 2 , and a total

rder ≤ Z , such that, yz 1 ≤ Y z 2 , the lexicographic order ≤ L in T
ollows the well-order:

1. (O 1 , { X }) = x

2. (O 1 , { X, Y }) = xy 1
3. (O 1 , { X, Y, Z }) = xy 1 z 1
4. (O 2 , { X, Y }) = xy 2
5. (O 2 , { X, Y, Z }) = xy 2 z 2
6. (O 1 , { X, Z }) = xz 1
7. (O 2 , { X, Z }) = xz 2
8. (O 1 , { Y }) = y 1
9. (O 1 , { Y, Z }) = y 1 z 1
0. (O 2 , { Y }) = y 2
1. (O 2 , { Y, Z }) = y 2 z 2
2. (O 1 , { Z }) = z 1
3. (O 2 , { Z }) = z 2

Now, the new Closure definition, named Lexicographic closure,

s introduced:

efinition 21 (Lexicographic closure for non-increasing monotonic

oolean similarity function) . The lexicographic closure of a pat-

ern is the application F CL : T −→ E, such that, F CL (T) = T f cl ∈
 | T f cl ∈ F Closure (T) , T fcl is the minimum pattern in FClosure (T).

ample 6. Sample of the lexicographic closure. Using

ample 5 and applying Definition 21 :

• F CL (O 1 , { X})) = (O 1 , { X, Y })
• F CL (O 1 , { X, Y }) = (O 2 , { X, Y, Z})

The lexicographic closure FCL is an application defined for all

ts domain due to Lemma 5 , whose proof is based on the following

emma:

emma 4 (FClosure is never empty) . Given a dataset

 = (O, A , V, P) and F ∈ N , ∀ T ∈ T ‖ F Closure (T) ‖ ≥ 1 .

roof. ∀ T ∈ T T ∈ E or T / ∈ E .

If T ∈ E:
1. T ∈ FClosure (T) because T ∈ E and T ∈ SupPatterns (T).

2. FClosure (T) ≥ 1 by 1.

If T / ∈ E :

1. Build H(T) ⊆ T as follows:

H(T) = { H ∈ SupP atterns (T) | F requency F (H)

= F requency F (T) } .
2. H (T) is non-empty because T / ∈ E . Also, H (T) is a finite set

because H(T) ⊆ T .

3. The relation H tam

⊆(H (T) × H (T)) is defined as follows:

H tam

= { (H 1 , H 2) ∈ (H(T) × H(T)) | ‖ H 1 . A‖ ≥ ‖ H 2 . A‖} .
H tam

is a total order in H (T).

4. The total ordered set (H (T), H tam

) is a well-ordered set because

H (T) is a non-empty and finite set and H tam

is a total order.

Consequently, there is a minimum element in H (T), that is

∃ H m

∈ H (T) | ∀ H ∈ H (T) ‖ H m

. A‖ ≥ ‖ H. A‖ .
5. H m

∈ E by 4.

6. H m

∈ FClosure (T) by 5.

7. FClosure (T) ≥ 1 by 6.

�

emma 5 (FCL is well-defined) . FCL is well-defined ∀ T ∈ T .

roof.

1. ∀ T ∈ T FClosure (T) is non-empty by Lemma 4 .

2. ∀ T ∈ T F Closure (T) ⊆ E ⊆ T and T has a well-order using ≤ L .

3. ∀ T ∈ T FCL (T) is well-defined by 1, 2 and because for all

well-ordered and non-empty sets there is a minimum element.

�

. Closed frequent similar pattern algorithm (CFSP-Miner)

In this section we introduce the CFSP-Miner algorithm for

ining closed frequent similar patterns when similarity functions

old the downward closure property from Lemma 2 . The algo-

ithm works by traversing a tree, defined by a father-child relation

hat contains all the closed frequent similar patterns. Before we

ntroduce the father-child relation definition, we need to introduce

 new definition:

efinition 22 (Minor prefix with equal FCL) . The minor prefix

ith equal FCL of a closed similar pattern is the application P rF CL :

 −→ A , such that P rF CL (T) = A pr ∈ T . A | F CL (P re f ix (T , A pr)) = T

and ∀ A m

∈ T . A | A m

< A A pr) FCL (Prefix (T, A m

)) 	 = T .

efinition 23 (Father-child relation among closed similar

atterns) . Father of closed similar pattern is the application

 ather : E −→ E ∪ T ROOT , such that:

 ather(T e)

=

{
F CL (Pre f ix (T e , Pre v ious (PrF CL (T e)))) i f P re v ious (P rF CL (T e)) = A 0

T ROOT otherwise
(4)

here T ROOT is a special pattern, such that T ROOT / ∈ T . Notice that

ather is defined for all its domain.

ample 7. Sample of the Father-child relation . Using

efinition 23 in Sample 5 , it can be seen that:

• F ather((O 1 , { X, Y, Z})) = (O 1 , { X, Y })
• F ather((O 2 , { X, Y })) = (O 1 , { X, Y })
• F ather((O 1 , { X, Y })) = T ROOT

•
 2 2

276 A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283

TROOT

(O1, {X, Y })

(O1, {X, Y, Z}) (O2, {X, Y })

(O2, {X, Y, Z})

(O1, {X, Z}) (O2, {X, Z})

Fig. 2. Sample of the father-child relation tree.

u

d

D

t

E

t

D

s

L

C

b

P

T

T

L

T

P

P

Definition 23 (father-child relations) can be use to built a graph

which is actually a tree.

Definition 24 (Father-child relation graph) . G is a the undi-

rected graph, such that G = (V, A) where V = E ∪ { T ROOT } and

A = { (T 1 , T 2) ∈ (V × V) | F ather(T 2) = T 1 } .
Lemma 6 (G is a tree) . The father-child relation graph G is a tree.

The proof of this Lemma is based on Lemma 7 .

Proof.

1. G is acyclic by Lemma 7 .

2. ‖ A ‖ = ‖ V ‖ − 1 because Father is an application defined ∀ T ∈ E
but not for T ROOT .

3. G is a tree by 1 and 2.

�

As example, Fig. 2 shows the father-child relation tree from

Sample 5 .

Lemma 7 (PrFCL grows from father to child) . P rF CL (T father) < A
P rF CL (T) ∀ T ∈ E | T father = F ather(T) 	 = T ROOT .

Proof.

1. T father = F CL (P re f ix (T , P re v ious (P rF CL (T)))) because

T father = Pather(T) .

2. P rF CL (T father) ≤A P re v ious (P rF CL (T)) by 1 and Lemma 8 .

3. P rF CL (T father) < A P rF CL (T) by 2.

�

Lemma 8 (PrFCL lower bound) . T ail(T) ≤A P rF CL (T f cl) ∀ T ∈ T
and T f cl = F CL (T) .

Proof.

1. Build Int ermediat e (T) ⊆ T as follows:

Int ermediat e (T) = { Z ∈ SupPatterns (T) y T f cl ∈ SupPatterns (Z) } .
2. ∀ Z ∈ SupPatterns (T), F CL (Z) = T f cl .

3. ∀ A int ∈ A | T ail(T) ≤A A int ≤A T ail(T f cl) , Prefix (T fcl ,

A int) ∈ Intermediate (T).

4. By 2 and 3: ∀ A int ∈ A | T ail(T) ≤A A int ≤A T ail(T f cl) ,

F CL (P re f ix (T f cl , A int)) = T f cl .

5. T ail(T) ≤A P rF CL (T f cl) by 4.

�

Having the tree that contains all closed similar patterns, a

traversal tree from the root can be defined to find all of them.

This can be done using a children application defined below:

Definition 25 (Children) . Children of a closed similar pattern is

the application Children : E ∪ T ROOT −→ 2 E , such that

Children (T) = { T ∈ E | F ather(T) = T } .
child child
To find the children of a closed similar pattern, we will

se Lemma 9 . Before introducing Lemma 9 , the following two

efinitions are needed:

efinition 26 (Extensions of a pattern) . Extensions of a pattern is

he application Extensions : T −→ 2 E , given that

xtensions (T)

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎩

T ext ∈ E | T ext 	 = F CL (T) and ∃ T +1 ∈ T , suchthat :

T = P re f ix (T +1 , P re v oius (Tail(T +1)))

T ext = F CL (T +1)

T +1 = Pre f ix (T ext , Tail(T +1)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎭

As example, using Definition 26 in Sample 5 , it can be seen

hat:

• (O 2 , { X, Y }) ∈ Extensions ((O 1 , { X })), in this case T +1 = (O 2 , { X, Y })
• (O 2 , { X, Y, Z }) ∈ Extensions ((O 2 , { X, Y })), in this case

T +1 = (O 2 , { X, Y, Z})
efinition 27 (inverse of FCL) . The inverse of FCL of a closed

imilar pattern is the application IF CL : E −→ 2 E , such that

IF CL (T) = { T i f cl ∈ E | F CL (T i f cl) = T } .
emma 9 (Finding children) . ∀ T ∈ E and ∀ T child ∈ E, T child ∈
hildren (T) iff T child ∈ Extensions (T ifcl) where T ifcl ∈ IFCL (T) .

The proof of Lemma 9 requires Lemmas 10, 11 and 12 that will

e provided later.

roof. It starts proving that if T child ∈ Extensions (T ifcl) for some

 ifcl ∈ IFCL (T) then T child ∈ Children (T).

1. T i f cl = P re f ix (T child , P re v ious (P rF CL (T child))) by

T child ∈ Extensions (T ifcl) and by Lemma 10 .

2. F CL (T i f cl) = T because T ifcl ∈ IFCL (T).

3. F ather(T child) = T by 1 and 2.

4. T child ∈ Children (T) by 3.

Now, it is proved that if T child ∈ Children (T) then

 child ∈ Extensions (T ifcl) for some T ifcl ∈ IFCL (T).

1. Give T i f cl = P re f ix (T child , P re v ious (P rF CL (T child))) :

2. T child ∈ Extensions (T ifcl) by Lemma 10 .

3. T = F CL (T i f cl) because T child ∈ Children (T).

4. T ifcl ∈ IFCL (T) by 3.

�

emma 10 (Equivalence with Extensions) . ∀ T ext ∈ E and ∀ T ∈ T ,
 ext ∈ Extensions (T) iff T = P re f ix (T ext , P re v ious (P rF CL (T ext))) .

roof. It starts proving that if T =
 re f ix (T ext , P re v ious (P rF CL (T ext))) then T ext ∈ Extensions (T).

1. T = P re f ix (T ext , P re v ious (P rF CL (T ext))) .

2. Let T +1 = (T .O, T . A ∪ P rF CL (T ext)) be a pattern, no-

tice that T = P re f ix (T +1 , P re v ious (T ail(T +1))) and T +1 =
P re f ix (T ext , T ail(T +1)) .

3. T ext = F CL (T +1) by definition of PrFCL.

4. T ext 	 = FCL (T) by 1 and definition of PrFCL.

5. T ext ∈ Extensions (T) by 2, 3 and 4.

Now, it is proved that if T ext ∈ Extensions (T) then T = P re f ix (T ext ,

Previous (PrFCL (T ext))).

1. T ext ∈ Extensions (T) implies that ∃ T +1 ∈ T .

2. T ext = F CL (T +1)

3. T ext 	 = FCL (T) because T ext ∈ Extensions (T).

4. P rF CL (T ext) = T ail(T +1) by 2 and 3.

A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283 277

L

s

P

L

P

f

p

c

f

q

t

s

s

F

t

c

t

c

i

{

e

a

I

a

c

i

L

F

∀
P

F

o

F

F

L

F

F

P

s

t

b

D

f

f

5. P re f ix (T ext , P re v ious (P rF CL (T ext))) = T by 4 and because

P re v ious (T ail(T +1)) = Tail (T).

�

emma 11 (The image of a closed similar pattern is it-

elf) . F CL (T) = T ∀ T ∈ E

roof.

1. ∀ T ∈ E T ∈ FClosure (T).

2. ∀ T ∈ E s �T x ∈ FClosure (T) | T x 	 = T because if there is T x , then it

contradicts that fact that T ∈ E .

3. ∀ T ∈ E F CL (T) = T by 1 and 2.

�

emma 12 (IFCL is never empty) . ‖ IF CL (T) ‖ ≥ 1 ∀ T ∈ E .

roof. It is sufficient to keep in mind that F CL (T) = T ∀ T ∈ E . �

The baseline of CFSP-Miner (Algorithm 1) is traversing the

Algorithm 1: CFSP-Miner Baseline (D, F , M, T).

Input : Dataset D = (O, A , V, P) ,
Similarity Function F ∈ N ,
Minimum Frequency Threshold M ∈ M

Frequent Closed Similar Pattern T ∈ S ∩ E eq

Output : Frequent Closed Similar Patterns Set SE eq

foreach T i f cl ∈ IF CL (T) do

foreach T child ∈ Extensions (T i f cl) do

if F requency F (T child) ≥ M then

SE eq ←

SE eq ∪ T child ∪ CFSP-Miner Baseline (D, F , M, T child)

requent closed similar patterns set starting from the special

attern T ROOT by means of Lemma 9 , which is used to find the set

hildren of a closed similar pattern.

Let’s see an example of a run of the CFSP-Miner Baseline algorithm,

or dataset and similarity function of Sample 4 and minimum fre-

uency threshold M = 2 . The sample of the father-child relation

ree (Fig. 2) will help us. Since the algorithm is recursive, by

implicity we will focus on explaining only one iteration. The

elected iteration is that which has as input T = (O 1 , { X, Y }) ,
 requency F (T) = 2 .

First, all elements that belong to IFCL (T) are found. Remember

hat IFCL (T) is the set of all elements that have T as lexicographic

losure. Then IF CL (T) = { (O 1 , { X, Y }) , (O 1 , { X}) , (O 1 , { Y }) } because:

• Always T belongs to IFCL (T),
• F CL ((O 1 , { X})) = T and F requency F ((O 1 , { X})) = 2 .
• F CL ((O 1 , { Y })) = T and F requency F ((O 1 , { Y })) = 2 .

For each element in IFCL (T), its extensions are searched. Ex-

ensions of a pattern T ′ is the set that contains the lexicographic

losure of each element obtained by adding one feature to T ′ after

ts last feature.

• Extensions ((O 1 , { X, Y })) = { FCL ((O 1 , { X, Y, Z }))} because in

Sample 4 there is only another feature, the Z feature, and

{ FCL ((O 1 , { X, Y, Z }))} = {(O 1 , { X, Y, Z })} because there is no

pattern that contains it. Then Extensions ((O 1 , { X, Y })) = {(O 1 ,

{ X, Y, Z })}.
• Extensions ((O 1 , { X})) = { F CL ((O 1 , { X, Z})) , F CL ((O 2 , { X, Y })) ,

F CL ((O 2 , { X, Z})) } because:

− (O 1 , { X, Z }) is the first way to add a feature to (O 1 , { X })

− (O 2 , { X, Y }) is another way to add a feature to (O 1 , { X }).

Notice that O 1 [X] = O 2 [X]

− (O , { X, Z }) is analogous to the previous case.
2 ‖
Also, F CL ((O 1 , { X, Z})) = (O 1 , { X, Z}) because its fre-

quency is 2 and there is no pattern that contains it.

By the same reason F CL ((O 2 , { X, Y })) = (O 2 , { X, Y }) and

F CL ((O 2 , { X, Z})) = (O 2 , { X, Z}) . Then Extensions ((O 1 , { X})) =
{ (O 1 , { X, Z}) , (O 2 , { X, Y }) , (O 2 , { X, Z}) } .

• Extensions ((O 1 , { Y })) is empty because there is no T e xt 	 = FCL (T),

such that T e xt = F CL (T ′) and T ′ = P re f ix (T ext , T ail(T ′)

The children of (O 1 , { X, Y }) are (O 1 , { X, Y, Z }), (O 1 , { X, Z }), (O 2 ,

 X, Y }), (O 2 , { X, Z }). The children with frequency greater than or

qual to 2 are added to the frequent closed similar patterns set,

nd each one is the input of another recursive iteration.

The most important step of CFSPs-Miner consists in finding the

FCL set of a closed similar pattern. To perform this step efficiently,

 prune property (Lemma 13), and a necessary and sufficient

ondition (Lemmas 14 and 16) for a pattern belonging to IFCL , are

ntroduced.

emma 13 (Pruning the search space of the IFCL set) . If

CL (T sup) 	 = T e , then FCL (T) 	 = T e ∀ T ∈ T , ∀ T sup ∈ SupPatterns (T),

 T e ∈ E | T e ∈ SupPatterns (T sup) .

roof. There are two cases: Frequency F (T sup) 	 = Frequency F (T e) or

 requency F (T sup) = F requency F (T e) .

If Frequency F (T sup) 	 = Frequency F (T e):

1. Frequency F (T) ≥ Frequency F (T sup) by Lemma 1 .

2. Frequency F (T sup) > Frequency F (T e) by Lemma 1 .

3. Frequency F (T) > Frequency F (T e) by 1 and 2.

4. FCL (T) 	 = T e by 3.

If F requency F (T sup) = F requency F (T e) :

There are two subcases: Frequency F (T sup) < Frequency F (T)

r F requency F (T sup) = F requency F (T) . If

requency F (T sup) < Frequency F (T) it should be noted that

requency F (T) 	 = Frequency F (T e).

If F requency F (T sup) = F requency F (T) :

1. T e ∈ FClosure (T sup) by Definition 18 .

2. FCL (T sup) < L T e by Definition 18 and due to T e 	 = FCL (T sup).

3. T e ∈ FClosure (T) and FCL (T sup) ∈ FClosure (T) by Definition 18 .

4. FCL (T) ≤ L FCL (T sup) < L T e by 2 and 3.

5. FCL (T) 	 = T e by 4.

�

emma 14 (Necessary condition for belonging to IFCL) . If

requency F (T) 	 = Frequency F (T e) or T ail(T) < A P rF CL (T e) , then

CL (T) 	 = T e ∀ T ∈ T , ∀ T e ∈ E | T e ∈ SupPatterns (T) .

roof. For the case Frequency F (T) 	 = Frequency F (T e), it is only neces-

ary to note that the definition of FCL requires equal Frequency F .

For the other case, T ail(T) < A P rF CL (T e) :

1. Prefix (T e , Previous (PrFCL (T e))) ∈ SupPatterns (T) because

T e ∈ SupPatterns (T) and T ail(T) < A P rF CL (T e) .

2. FCL (Prefix (T e , Previous (PrFCL (T e)))) 	 = T e by Definition 22 .

3. FCL (T) 	 = T e by 1, 2 and Lemma 14 .

�

To introduce the sufficient condition for a pattern belonging

o the IFCL , Definitions 28 and 29 , and Lemma 15 are presented

elow.

efinition 28 (Super patterns with one more feature and equal

requency) . Super patterns with one more feature and equal

requency of a pattern is the application SupPatterns = +1
: T −→ 2 T ,

such that:

SupPatterns = +1 (T) = { T = +1 ∈ SupPatterns (T) | ‖ T = +1 . A‖ =
 T . A‖ + 1 and F requency F (T = +1

) = F requency F (T) }

278 A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283

Algorithm 2: CFSP-Miner (D, F , M, T).

Input : Dataset D = (O, A , V, P) ,
Similarity Function F ∈ N ,
Minimum Frequency Threshold M ∈ M

Frequent Closed Similar Pattern T ∈ S ∩ E eq

Output : Frequent Closed Similar Patterns Set SE eq

if ∃ T men ∈ SupP atterns = +1 (T) | T men < L T then

return

Deri v ationF ound ← F alse
foreach T exp ∈ SupP atterns (T) such that
‖ T exp . A‖ = ‖ T . A‖ + 1 , T ail (T) < A T ail (T exp) do

if ¬ Deri v ationF ound and

F requency F (T exp) = F requency F (T) then

Deri v ationF ound ← T rue
foreach T equal− f cl ∈ T such that T exp ∈

SupP atterns (T equal− f cl) , T ail(T equal− f cl) = T ail(T exp) ,
F CL (T equal− f cl) = F CL (T exp) do

SE eq ← SE eq ∪ CFSP-Miner (D, F , M, T equal− f cl)

else

SE eq ← SE eq ∪ CFSP-Miner (D, F , M, T exp)

if ¬ Deri v ationF ound then

SE eq ← SE eq ∪ T

f

d

C

e

{

i

e

c

t

Y

i

P

c

(

S

P

5

a

o

T

h

s

a

t

s

o

c

s

w
Definition 29 (Derivation of a pattern) . Derivation of a pattern is

the application Deri v ation : T −→ T , such that:

Deri v ation (T) =

{

min

T ′ ∈ SupPatterns = +1
(T)

T ′ i f ‖ SupPatterns = +1 (T) ‖ > 0

T otherwise

(5)

Notice that Derivation is defined for all its domain.

Lemma 15 (Property of derivation) . F CL (T) = F CL (Deri v ation (T))

∀ T ∈ T .

Proof. First, FCL (Derivation (T)) ≤ L FCL (T) is proved:

1. FCL (Derivation (T)) ∈ SupPatterns (T) because FCL (Derivation (T))

∈ SupPatterns (Derivation (T)) and Derivation (T) ∈ SupPatterns (T).

2. F requency F (F CL (Deri v ation (T))) = F requency F (Deri v ation (T)) =

F requency F (T) by Definitions 21 and 29 .

3. FCL (Derivation (T)) ∈ FClosure (T) by 1 and 2.

4. FCL (Derivation (T)) ≤ L FCL (T) by 3 and by Definition 21 .

Now, FCL (T) ≤ L FCL (Derivation (T)) is proved:

1. FCL (T) ∈ SupPatterns (Derivation (T)) by Definitions 21 and 29 .

2. F requency F (T) = F requency F (Deri v ation (T)) =

F requency F (F CL (Deri v ation (T))) by Definitions 21 and 29 .

3. FCL (T) ∈ FClosure (Derivation (T)) by 1 and 2.

4. FCL (T) ≤ L FCL (Derivation (T)) by 3 and by Definition 21 .

After that, F CL (T) = F CL (Deri v ation (T)) because ≤ L is a total

order. �

Lemma 16 (Sufficient condition to belong to IFCL) . If

F CL (Deri v ation (T)) = T e , then F CL (T) = T e ∀ T ∈ T and ∀ T e ∈ E .

Proof. This Lemma is a direct consequence of Lemma 15 . �

At this point, it can be obtained the IF CL (T e) ∀ T e ∈ E in an

efficient way, traversing all subpatterns of T e using Lemmas 13 and

14 to prune the search space, and Lemma 16 to check if a

subpattern belongs to IFCL (T e).

To achieve an efficient implementation of CFSP-Miner

(Algorithm 2) , the sets IFCL and Extensions are simultaneously

built. This is accomplished by expanding, in lexicographical order,

the patterns by adding new features and their values.

When the new expanded pattern is the first to have the same

frequency as its non-expanded version, its subpatterns, including

the feature Tail and with equal FCL , are also expanded. Each

subpattern can be used to obtain new children.

Before expanding a pattern and to avoid repeating the same

analysis, it should be verified that there is no superpattern less

(using ≤ L) than it with the same frequency.

To define ≤ L it is necessary to establish a well-order in A

from the cardinality of the domains of the features. However, to

define ≤Domain (A) ∀ A ∈ A for numerical features, the conventional

order defined by ≤ is used, whereas for non-numerical features,

the order in which values appear in the data set is used.

Let’s see an example of a run of the CFSP-Miner algorithm

for dataset and similarity function of sample 4 and minimum

frequency threshold M = 2 . CFSP-Miner starts from the special

pattern T ROOT .

Each T exp is found by extending T ROOT with one feature value.

Then T exp iterates over {(O 1 , { X }), (O 1 , { Y }), (O 1 , { Z }), (O 2 , { Y }), (O 2 ,

{ Z })}. For each T exp , F requency F (T exp) = 2 .

The flag Deri v ationF ound = T rue means that it has a derivation :

a pattern with equal frequency and one more field and it is the

smallest one that was found expanding in Lexicographic Order. In

other words, Deri v ationF ound = T rue implies that it is not closed,

but the path where will appear the FCL of this pattern, has been

found.
For each T exp , the frequency of T exp is different from the

requency of T ROOT . Then a recursive call to the algorithm will be

one for each T exp . So far no closed pattern has been found.

We do not explain all recursive calls, instead, we focus on

FSP-Miner (D, F , M, (O 1 , { X})). For this call each T exp is found by

xtending (O 1 , { X }) with one feature value. Then T exp iterates over

(O 1 , { X, Y }), (O 1 , { Y, Z })}. For each T exp , F requency F (T exp) = 2 .

Note that T exp = (O 1 , { X, Y }) is a derivation of (O 1 , { X }) because

t has the same frequency and it is the first pattern that was found

xpanding in Lexicographic Order. Therefore the next recursive

alls will be for each T equal− f cl : subsets of (O 1 , { X, Y }) that have

he same FCL of (O 1 , { X, Y }) and retain the last feature of (O 1 , { X,

 }). In this case the only one T equal− f cl is (O 1 , { X, Y }) itself. Finally,

n its recursive call, it is added to the Frequent Closed Similar

atterns Set because it has no derivation. Subsequent recursive

alls will not be explained.

An analogous situation is observed for T exp = (O 1 , { Y, Z}) , then

 O 1 , { Y, Z }) is also added to the Frequent Closed Similar Patterns

et.

Following all the recursive calls, all Closed Frequent Similar

atterns will appear.

.1. Complexity analysis

To analyze the computational complexity of CFSP-Miner , we ex-

mine the worst case. The input of CFSP-Miner consists of a dataset

f m objects O, each one described by a set of n features A .

herefore, the size of input is mn . The size of output, on the other

and, is the number c of frequent similar closed patterns. We as-

ume that the cost of computing the similarity between a pattern

nd an object is O (n), since n attributes have to be compared.

Let’s focus on the number of operations that must be performed

o find each frequent similar closed pattern. For each frequent

imilar closed pattern candidate, it must be compared against all

bjects in the dataset in order to compute its frequency. Therefore,

omputing the frequency of a pattern candidate is O (mn). For each

imilar closed pattern candidate, its IFCL must also be computed,

hich is O (n 2). Therefore, the complexity of CFSP-Miner is O (cmn 3).

A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283 279

Fig. 3. A particular case of the number of operations required by CFSP-Miner, ObjectMiner and STreeDC-Miner varying the number of frequent similar patterns p from [1,

10 0 0], the number of frequent similar closed patterns c from [1,20], and considering m = 10 0 0 objects and n = 10 features.

M

t

t

t

t

t

o

f

c

c

b

F

r

v

a

a

i

r

r

p

t

6

C

t

i

b

i

S

p

o

t

a

D

Table 1

Description of datasets.

Datasets Objects Non-numerical features Numerical features

Dermatology 366 34 1

Flags 194 20 10

Mushroom 8124 22 0

Waveform 50 0 0 40 1

Vehicle 946 1 18

Wine 178 1 13

w

a

6

s

H

u

a

p

S

t

C

C

w

t

C

M

d

s

1 http://archive.ics.uci.edu/ml/datasets.html .
A similar analysis can be done for the ObjectMiner and STreeDC-

iner algorithms. Given that IFCL does not have to be computed,

he computational complexity in both cases is O (pmn), where p is

he number of frequent similar patterns obtained as output.

If the number of frequent similar closed patterns is similar to

he number of frequent similar patterns, note that the compu-

ational complexity of ObjectMiner and STreeDC-Miner is smaller

han the computational complexity of CFSP-Miner . If the number

f similar closed patterns is much smaller than the number of

requent similar patterns, on the other hand the computational

omplexity of CFSP-Miner will be smaller than the computational

omplexity of ObjectMiner and STreeDC-Miner . These situations will

e experimentally verified in the next section.

Analytically, ∀ c > 0, ∃ p > 0, c < p / n 2 , such that, cmn 3 < pmn .

ig. 3 shows a particular case about the number of operations

equired by CFSP-Miner and ObjectMiner and STreeDC-Miner at

arying the number of frequent similar patterns p from [1, 10 0 0]

nd the number of frequent similar closed patterns c from [1,20];

nd considering m = 10 0 0 objects and n = 10 features. This figure

llustrates that there is a region where the number of operations

equired by CFSP-Miner is less than the number of operations

equired by ObjectMiner and STreeDC-Miner

It is also worth noting that the number of patterns in the out-

ut for the three algorithms is exponentially bounded regarding

he input size.

. Experimental results

In this section, the performance of the proposed algorithm

FSP-Miner is evaluated. We divide the experimental results into

wo subsections. In the first subsection (Section 6.1), a comparison

n terms of time needed for mining the frequent similar patterns

y each algorithm (CFSP-Miner, ObjectMiner and STreeDC-Miner)

s presented. It is important to highlight that ObjectMiner and

TreeDC-Miner algorithms obtain the set of all frequent similar

atterns S, whereas the proposed algorithm, CFSP-Miner , obtains

nly the set of all closed frequent similar patterns S ∩ E . In

he second subsection (Section 6.2), the scalability of CFSP-Miner

lgorithm is shown.

The experiments were done on a PC with a Intel(R) Core(TM)2

uo at 1.83 Ghz and 2Gb of RAM. The CFSP-Miner algorithm
as implemented in CSharp. For ObjectMiner and STreeDC-Miner

lgorithms, the Java implementations of their authors were used.

.1. Efficiency of CFSP-Miner algorithm

Table 1 gives a description of the datasets 1 used. A different

imilarity function can be defined for each particular problem.

owever, the goal of these experiments is not to solve a partic-

lar problem but simply to assess the efficiency of the proposed

lgorithm. That is why the similarity functions are not tied to any

articular problem in this work.

For this experiment, the similarity function F α
prod

, defined in

ample 2 , with α = 0 . 1 was used. As comparison criteria we used

he following:

If A is numerical feature:

 A (A v 1 , A v 2) =

{
ss 1 if | A v 1 −A v 2 |

M ax A −M in A
≤ θ

0 otherwise

If A is a non-numerical feature:

 A (A v 1 , A v 2) =

{
1 if A v 1 = A v 2
0 otherwise

Fig. 4 shows the runtime of the algorithms for each data set

hen the frequency percent M % is varied from 10 to 90. Notice

hat, M% =

M

‖O‖ where M is the minimum frequency threshold.

FSP-Miner outperforms the runtimes of ObjectMiner and STreeDC-

iner in 4 (Flags, Dermatology, Mushroom , and Waveform) of the 6

atasets. While the opposite happens in Vehicle and Wine datasets.

This behavior is explained by observing the percent of frequent

imilar patterns that are closed (Percent in Fig. 5) and keeping in

http://archive.ics.uci.edu/ml/datasets.html

280 A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283

Fig. 4. Runtime of CFSP-Miner, ObjectMiner and STreeDC-Miner algorithms for the datasets of Table 1 .

Y

f

‖

i

o

d

M

%

P

1

1

c

b

∃

.

w

t

b

b

d

mind the complexity analysis of the algorithms. Remember that,

for each similar closed pattern candidate, its IFCL must also be

computed by CFSP-Miner , while STreeDC-Miner and ObjectMiner

do not include this step for each similar pattern candidate. Then

when the amount closed frequent similar patterns is almost equal

to the amount of frequent similar patterns (Vehicle and Wine

datasets), STreeDC-Miner and ObjectMiner outperform the runtime

of CFSP-Miner . When the percent of frequent similar patterns that

are closed decreases, on the other hand, the amount of similar

closed pattern candidates verifications and the amount of the IFCL

computed also decrease. Then the runtime of CFSP-Miner decreases

compared to the runtimes of STreeDC-Miner and ObjectMiner . In

this experiment CFSP-Miner outperforms the runtimes of STreeDC-

Miner and ObjectMiner when less than 80% percent of frequent

similar patterns are closed (Flags, Dermatology, Mushroom , and

Waveform datasets).

It is important to highlight that the main characteristic of CFSP-

Miner is its ability to find the “closed” similar patterns, yielding

a reduction in the number of frequent similar patterns without

information loss. CFSP-Miner can also outperform the runtimes

of ObjectMiner and STreeDC-Miner , depending on the percent of

frequent similar patterns that are closed.

To analyze in more detail the behavior of CFSP-Miner , different

datasets 2 with a defined percent of frequent similar patterns that

are closed were automatically generated.
2 The similarity function used for these datasets was F 0 . 2
prod

.

d

A

s

First, three natural numbers X (for the amount of objects),

 (for the amount of features), and Z (for the cardinality of the

eature domains) are fixed. Then, D is built such that ‖ O ‖ = X,

 A ‖ = Y and P(O, A) = V random

∀ O ∈ O and ∀ A ∈ A , where V random

s a value for the random feature V with uniform distribution

ver { 1 , 2 , . . . , Z} . O (X) A (Y) D (Z) denotes the set of all datasets D

efined by X, Y and Z .

For the first experiment, designed to proof that CFSP-

iner has a poor performance when Percent is close to 100

, let D 0 ∈ O (10 0 0 0) A (10) D (100) be a dataset, such that

ercent(M) = 100% for the minimum frequency threshold values

0%, 30%, 50%, 70%, and 90%.

To obtain D 0 , it was only necessary to generate less than

0 times the random dataset. This can be claimed because the

haracteristics of a discrete random variable with uniform distri-

ution over { 1 , 2 , . . . , 100 } guarantee a very low probability of

 T ∈ T | F CL (T) 	 = T and a high probability of Percent(M) = 100%

 Proving this is not relevant, but it is sufficient to say that D 0

as obtained with those characteristics.

Fig. 6 a) shows that CFSP-Miner has the worst performance from

he tested algorithms for the dataset D 0 , which is the expected

ehavior when Percent is near to 100%. However, as it is shown

elow, the performance of CFSP-Miner improves when Percent

ecreases.

To prove that, a continuous random variable with normal

istribution N(Z/ 2 , 1 /Z) is used to generate values for a feature.

fter that, A

∗ denotes such feature and O (X) A (Y) D (Z) ∗ denotes the

et of all datasets D that can be generated in this way.

A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283 281

Fig. 5. Percent of closed frequent similar patterns respect to frequent similar patterns.

Fig. 6. Runtime of the algorithms CFSP-Miner, ObjectMiner and STreeDC-Miner for datasets: a) D 0 with Percent(M) = 100 , b) D 1 with Percent (M) < 75, c) D 2 with Per-

cent (M) < 50 and d) D 3 datasets with Percent (M) < 25.

O

O

O

f

2

p

g

h

o

o

a

d

s
For the next experiment, we create D 1 ∈
 (10 0 0 0) A (10) D (100) ∗ with Percent (M) < 75%, D 2 ∈

 (10 0 0 0) A (10) D (10 0) ∗∗ with Percent (M) < 50% and D 3 ∈

 (10 0 0 0) A (10) D (10 0) ∗∗∗ with Percent (M) < 25%, for the minimum

requency threshold {10%, 30%, 50%, 70%, 90%}.

To obtain D 1 , it was only necessary to generate less than

0 times the random dataset. This fact is justified because the

robability distribution from which the Z values were generated,

uarantees that the probability of FCL (T) 	 = T is high and Percent
as a high probability of decrease. Like the previous case, a proof

f this is not relevant and it is sufficient to say that D 1 was

btained with those characteristics.

D 2 ∈ O (10 0 0 0) A (10) D (10 0) ∗∗ with Percent (M) < 50% and D 3 ∈
O (10 0 0 0) A (10) D (10 0) ∗∗∗ with Percent (M) < 25% were obtained

nalogously.

Note that the runtime of CFSP-Miner in Fig. 6 is the best for

atasets with percent less than 80 (i.e., D 1 , D 2 and D 3) of frequent

imilar patterns that are closed. This confirms the result of the

282 A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283

Fig. 7. Scalability of CFSP-Miner algorithm. a) w.r.t objects. b) w.r.t features. c) w.r.t domains.

p

f

u

f

m

r

f

i

i

l

o

C

b

n

t

M

t

m

r

f

n

f

A

n

R

A

A

B

B

previous experiment: CFSP-Miner outperforms the runtimes of

STreeDC-Miner and ObjectMiner when less than 80% percent of

frequent similar patterns are closed.

For all minimum frequency thresholds, CFSP-Miner also im-

proves its runtime performance gradually from D 0 to D 3 (i.e.,

Percent decreases).

6.2. Scalability of CFSP-Miner algorithm

To show the scalability of CFSP-Miner , several experiments were

conducted varying the dimensions of the datasets. Random data

sets with Percent(M) = 100% were automatically generated. These

datasets were selected because it represents the worst case for

CFSP-Miner algorithm, as was shown in Section 6.1 .

Fig. 7 shows the scalability of CFSP-Miner algorithm with

respect to a) objects, b) features, and c) domains.

It can be seen in Fig. 7 a) that the runtime increases when

the number of objects increases, as it was expected. The worst

runtime is still in an acceptable range compared to results in the

previous section.

Something similar happens in Fig. 7 b) when the number of

features is increased. Note that increasing the number of features

produces an exponential increase of the search space of closed

frequent similar patterns, which slows runtime. Despite this fact,

CFSP-Miner still achieves acceptable runtimes compared to results

in the previous section. This demonstrates good scalability for the

range of number of objects and features shown in this experiment.

Fig. 7 c) shows that runtime decreases when the size of the

domain increases. This increase in size of the domain causes a

decrease in the probability of having repeated values due to using

a uniform distribution. The number of frequent patterns decreases

and reducing the execution time.

In Summary, we can see from the Fig. 7 that the number of

features is the parameter that most negatively impacts the scala-

bility of our algorithm. This is in concordance with the complexity

analysis presented in section 5.1 .

7. Conclusions

In this paper we proposed the concept of closed frequent similar

pattern mining for discovering a reduced set of frequent similar
atterns without information loss. We also proposed a novel closed

requent similar pattern mining algorithm, named CFSP-Miner , that

ses boolean monotonic similarity functions to find all the closed

requent similar patterns.

The results show that the proposed CFSP-Miner algorithm is

ore efficient than other frequent similar pattern mining algo-

ithms from the literature, except in the case when the number of

requent similar patterns and the number of closed frequent sim-

lar patterns are almost equal. Another strength of CFSP-Miner is

ts ability to find the “closed” similar patterns without information

oss. In most of the analysed data sets, CFSP-Miner reduced amount

f discovered frequent similar patterns by approximately 50%.

FSP-Miner can also be scaled for use in high-dimensional data sets

ecause the experimental results have shown that increases in the

umber of objects, the number of features, or the size of each fea-

ure domain maintains the runtime in an acceptable range.

For future work, we visualize improving the efficiency of CFSP-

iner , exploring the ideas proposed in the most recently works

o improve the efficiency of traditional closed frequent itemset

ining algorithms and studying the feasibility of extending these

esults to closed frequent similar pattern mining. Extending closed

requent similar patterns mining and association rules mining for

on-boolean similarity functions and non-monotonic similarity

unctions is another interesting future work.

cknowledgments

Thanks to Douglas David Crockett for his editing help as a

ative English speaker.

eferences

grawal, R. , Imieli ́nski, T. , & Swami, A. (1993). Mining association rules between sets

of items in large databases. In Acm sigmod record: 22 (pp. 207–216). ACM .
Agrawal, R. , et al. (1994). Fast algorithms for mining association rules. In Proc. 20th

int. conf. very large data bases, vldb: 1215 (pp. 4 87–4 99) .
latas, B. , Akin, E. , & Karci, A. (2008). Modenar: Multi-objective differential evo-

lution algorithm for mining numeric association rules. Applied Soft Computing,

8 (1), 646–656 .
aeza-Yates, R. , et al. (1999). Modern information retrieval : 463. ACM press New York .

eil, F. , Ester, M. , & Xu, X. (2002). Frequent term-based text clustering. In Proceedings
of the eighth acm sigkdd international conference on knowledge discovery and data

mining (pp. 436–442). ACM .

http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0005

A.Y. Rodríguez-González et al. / Expert Systems With Applications 96 (2018) 271–283 283

B

C

D

F

G

H

H

H

H

K

L

L

L

L

L

L

M

N

N

N

N

O

P

P

P

R

R

R

R

U

V

W

W

Z
urdick, D. , Calimlim, M. , & Gehrke, J. (2001). Mafia: A maximal frequent itemset al-
gorithm for transactional databases. In Data engineering, 2001. proceedings. 17th

international conference on (pp. 443–452). IEEE .
hiu, C.-Y. , Yeh, C.-T. , & Lee, Y.-J. (2013). Frequent pattern based user behavior

anomaly detection for cloud system. In 2013 conference on technologies and ap-
plications of artificial intelligence (pp. 61–66). IEEE .

anger, R. , Ruiz-Shulcloper, J. , & Llavori, R. B. (2004). Objectminer: A new approach
for mining complex objects.. In Iceis (2) (pp. 42–47). Citeseer .

an, Y. , Ye, Y. , & Chen, L. (2016). Malicious sequential pattern mining for automatic

malware detection. Expert Systems with Applications, 52 , 16–25 .
ómez-Herrera, J. , et al. (1994). Prognostic of gas-oil deposits in the cuban ophi-

ological association. Applying Mathematical Modeling, Geofisica Internacional,
33 (3), 447467 .

an, H. L. J. , & Shao, D. X. Z. (2006). Mining frequent patterns from very high di-
mensional data: A top-down row enumeration approach. In Proceedings of the

sixth siam international conference on data mining: 124 (p. 282). SIAM .

ashem, T., Karim, M. R., Samiullah, M., & Ahmed, C. F. (2017). An efficient dynamic
superset bit-vector approach for mining frequent closed itemsets and their lat-

tice structure. Expert Systems with Applications, 67 , 252–271. doi: 10.1016/j.eswa.
2016.09.023 .

ernández-León, R. , Carrasco-Ochoa, J. A. , Martínez-Trinidad, J. F. , & Hernández–
Palancar, J. (2012). Classification based on specific rules and inexact coverage.

Expert Systems with Applications, 39 (12), 11203–11211 .

u, T. , Sung, S. Y. , Xiong, H. , & Fu, Q. (2008). Discovery of maximum length frequent
itemsets. Information Sciences, 178 (1), 69–87 .

alpana, B. , & Nadarajan, R. (2008). Incorporating heuristics for efficient search
space pruning in frequent itemset mining strategies. Current science, 94 (1),

97–101 .
e, T., & Vo, B. (2015). An n-list-based algorithm for mining frequent closed patterns.

Expert Systems with Applications, 42 (19), 6648–6657. doi: 10.1016/j.eswa.2015.04.

048 .
ee, A. J. , Wang, C.-S. , Weng, W.-Y. , Chen, Y.-A. , & Wu, H.-W. (2008). An efficient

algorithm for mining closed inter-transaction itemsets. Data & Knowledge Engi-
neering, 66 (1), 68–91 .

i, J. , Fu, A. W.-c. , & Fahey, P. (2009). Efficient discovery of risk patterns in medical
data. Artificial intelligence in medicine, 45 (1), 77–89 .

i, J. , et al. (2005). Mining risk patterns in medical data. In Proceedings of the

eleventh acm sigkdd international conference on knowledge discovery in data min-
ing (pp. 770–775). ACM .

iu, H. , et al. (2009). Top-down mining of frequent closed patterns from very high
dimensional data. Information Sciences, 179 (7), 899–924 .

opez, F. J. , Blanco, A. , Garcia, F. , Cano, C. , & Marin, A. (2008). Fuzzy association rules
for biological data analysis: a case study on yeast. BMC bioinformatics, 9 (1), 1 .

oonesinghe, H. , Fodeh, S. , & Tan, P.-N. (2006). Frequent closed itemset mining us-

ing prefix graphs with an efficient flow-based pruning strategy. In Sixth interna-
tional conference on data mining (icdm’06) (pp. 426–435). IEEE .
ahar, J. , Imam, T. , Tickle, K. S. , & Chen, Y.-P. P. (2013). Association rule mining to
detect factors which contribute to heart disease in males and females. Expert

Systems with Applications, 40 (4), 1086–1093 .
air, B. , & Tripathy, A. K. (2011). Accelerating closed frequent itemset mining by

elimination of null transactions. Journal of Emerging Trends in Computing and
Information Sciences, 2 (7), 317–324 .

ezhad, J. T. , & Sadreddini, M. (2007). Ptclose: A novel algorithm for generation of
closed frequent itemsets from dense and sparse datasets. In Proceedings of the

world congress on engineering: 1 .

guyen, L. T. , & Nguyen, N. T. (2015). An improved algorithm for mining class asso-
ciation rules using the difference of obidsets. Expert Systems with Applications,

42 (9), 4361–4369 .
rtiz-Posadas, M. R. , Vega-Alvarado, L. , & Toni, B. (2009). A mathematical function

to evaluate surgical complexity of cleft lip and palate. Computer methods and
programs in biomedicine, 94 (3), 232–238 .

an, F. , Tung, A. K. , Cong, G. , & Xu, X. (2004). Cobbler: combining column and row

enumeration for closed pattern discovery. In Scientific and statistical database
management, 2004. proceedings. 16th international conference on (pp. 21–30).

IEEE .
ei, J. , et al. (20 0 0). Closet: An efficient algorithm for mining frequent closed item-

sets.. In Acm sigmod workshop on research issues in data mining and knowledge
discovery: 4 (pp. 21–30) .

rabha, S. , Shanmugapriya, S. , & Duraiswamy, K. (2013). A survey on closed frequent

pattern mining. International Journal of Computer Applications, 63 (14) .
odríguez-González, A. Y. , Martínez-Trinidad, J. F. , Carrasco-Ochoa, J. A. , & Ruiz-Shul-

cloper, J. (2008). Mining frequent similar patterns on mixed data. In Iberoamer-
ican congress on pattern recognition (pp. 136–144). Springer .

odríguez-González, A. Y. , Martínez-Trinidad, J. F. , Carrasco-Ochoa, J. A. , & Ruiz-Shul-
cloper, J. (2011). Rp-miner: A relaxed prune algorithm for frequent similar pat-

tern mining. Knowledge and information systems, 27 (3), 451–471 .

odríguez-González, A. Y. , Martínez-Trinidad, J. F. , Carrasco-Ochoa, J. A. , & Ruiz-Shul-
cloper, J. (2013). Mining frequent patterns and association rules using similari-

ties. Expert Systems with Applications, 40 (17), 6 823–6 836 .
uiz-Shulcloper, J. , & Fuentes-Rodríguez, A. (1981). A cybernetic model to analyze

juvenile delinquency. Revista Ciencias Matemáticas, 2 (1), 123–153 .
no, T. , Asai, T. , Uchida, Y. , & Arimura, H. (2003). Lcm: An efficient algorithm for

enumerating frequent closed item sets.. Fimi : 90. Citeseer .

o, B., Hong, T.-P., & Le, B. (2012). Dbv-miner: A dynamic bit-vector approach for
fast mining frequent closed itemsets. Expert Systems with Applications, 39 (8),

7196–7206. doi: 10.1016/j.eswa.2012.01.062 .
eisstein, E. W. (2002). CRC concise encyclopedia of mathematics . CRC press .

en, J. , Zhong, M. , & Wang, Z. (2015). Activity recognition with weighted frequent
patterns mining in smart environments. Expert Systems with Applications, 42 (17),

6423–6432 .

aki, M. J. , & Hsiao, C.-J. (2002). Charm: An efficient algorithm for closed itemset
mining.. In Sdm: 2 (pp. 457–473). SIAM .

http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0011
https://doi.org/10.1016/j.eswa.2016.09.023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0015
https://doi.org/10.1016/j.eswa.2015.04.048
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0035
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0035
https://doi.org/10.1016/j.eswa.2012.01.062
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30834-5/sbref0039

	Closed frequent similar pattern mining: Reducing the number of frequent similar patterns without information loss
	1 Introduction
	2 Related work
	2.1 Frequent similar pattern mining
	2.2 Closed frequent itemset mining

	3 Basic concepts and notations
	4 Combining frequent similar pattern and closed frequent similar pattern concepts
	5 Closed frequent similar pattern algorithm (CFSP-Miner)
	5.1 Complexity analysis

	6 Experimental results
	6.1 Efficiency of CFSP-Miner algorithm
	6.2 Scalability of CFSP-Miner algorithm

	7 Conclusions
	 Acknowledgments
	 References

