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This study examines the effect of shape index on the elastic buckling of Cassini oval shells under uniform
external pressure. Shells are evaluated under a uniform wall thickness (2 mm) and capacity (3.63x10® mm®), with
the shape index, k. = c¢/a, ranging from 0 to 0.99. Several numerical computations, involving linear elastic
bifurcation analysis and geometrically nonlinear elastic analysis including eigenmode imperfections, are con-
ducted for these shells. Some of them are investigated experimentally. The results show that a Cassini oval shell

with a stable character seems to be an unfavorable shape due to its low load-carrying capacity, which is at
variance with previous findings regarding this problem. Notably, the k. = 0.1 Cassini oval geometry, exhibiting a
high load-carrying capacity, appears to be a favorable shape in various fields such as underwater tanks, pressure

hulls, and artificial capsules.

1. Introduction

Shells of revolution under uniform external pressure have long
generated considerable research interest due to their effective load-
carrying properties. They are applied in various engineering fields such
as space launch vehicles [1], artificial capsules [2], buoyancy units [3],
pressure hulls [4,5], and underground tanks [6]. The most extensively
adopted configurations are spheres [7,8], cylinders [9,10], cones
[11,12] and their combinations [13]. Atypical shells such as ellipsoids
[14], barrels [15,16], eggs [17,18], and Cassini ovals [6] have been
explored as well. However, these shells have been found to be prone to
buckling when subjected to uniform external pressure, which often
results in an unrecoverable collapse; the buckling of a vessel is heavily
affected by its geometrical shape, wall thickness, and material proper-
ties, as well as the initial geometric imperfections [19-21].

One means of improving safety is to change the meridional shape of
the shell. Numerous studies have focused on atypical shells of revolu-
tion with positive or negative Gaussian curvature. For instance, Blachut
has performed a numerical and experimental study of the elastic—plastic
buckling of a set of shells of revolution resembling circular arcs [22]
and generalized ellipses [23], which were also compared with equiva-
lent cylindrical shells. More recently, to resolve the disadvantages of
spherical pressure hulls, such as high imperfection sensitivity, poor
streamlining, and low space utilization rate, the buckling behaviors of
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egg-shaped shells were further studied [17], as well as the effect of
shape index on buckling [18]. In addition, Jasion and Magnucki have
carried out a numerical and analytical study of the elastic buckling of
Cassini oval shells [6], clothoidal-spherical shells [24], and circular arc
shells [25]. Notably, Jasion and Magnucki found that the equilibrium
paths of some Cassini oval shells had a stable character [6], which is
typical for elastic bars and plates. They suggested that the Cassini oval
shells appeared to be a favorable shape for an externally pressurized
structure, and that the Cassini oval shells could ensure safety both
during buckling and in the postbuckling stages. However, only Cassini
oval shells with shape indices within a limited range (0.6-0.9) were
considered. Moreover, a comparison among shells that was based on the
same capacity and mass led to a different wall thickness for each shell,
which might reduce the convincingness of conclusions because most
relevant comparisons were based on either the same capacity and wall
thickness or the same mass and wall thickness [15,25].

Therefore, the current study focused on the elastic buckling of ex-
ternally pressurized Cassini oval shells with shape indices within the
range of 0-0.99. The shells were assumed to be of the same material,
capacity, and wall thickness. The rest of this paper is organized as
follows. Section 2 presents the definition of the geometry, load, capa-
city, wall thickness, material, and numerical model of Cassini oval
shells. In Section 3, the linear elastic buckling behaviors of perfect
Cassini oval shells and the nonlinear elastic buckling of imperfect shells
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Fig. 1. Schematic of a Cassini ovaloidal shell (a), along with geometries with the typical
shape indices, k. (b).

are proposed on the basis of a number of numerical computations; the
effect of shape index on buckling is also proposed. The computations
revealed that Cassini oval shells with a stable character had a low load-
carrying capacity. Notably, a Cassini oval shell with k. = 0.1 exhibited a
higher load-carrying capacity and lower imperfection sensitivity than a
spherical shell in the case of elastic buckling and small eigenmode
imperfection size-to-wall thickness ratio. This observation was partially
validated for laboratory scale models and corresponding computations.

2. Problem definition
2.1. Geometrical properties

Consider a Cassini oval shell (Fig. 1(a)) with a semimajor axis, x., a
semiminor axis, 1, and a uniform wall thickness, t, subjected to some
uniform external pressure, p,; the radius, r, of the circumference of a
shell of revolution in Cartesian coordinates is as follows:

e = \/\/4C2x2 + a*—(c? + x?), 6h)

where a and c are equation parameters. The shape index, k. = c/a,
controls the shape of the Cassini oval shell. As shown in Fig. 1(b), for
k. = 0, a spherical shell is obtained. For 0 <k.<0.707, a shell of re-
volution with positive Gaussian curvature is obtained. For k., = 0.707, a
clothoidal-spherical-like shell is obtained [24]. For 0.707 <k.<0.99, a
peanut-pod-like shell, including two individual small axisymmetric
shells with positive Gaussian curvature along with the middle transition
zone with negative Gaussian curvature, is obtained [26]. For k. =1,
two individual water-drop-like shells with positive Gaussian curvature
are obtained. According to this equation, the semimajor axis is
X, = a+/14k?; the semiminor axis is 1, = a/1—k2.

The meridional radius R, (x) and circumferential radius R, (x) of the
curvature of the Cassini oval shell can be obtained from Eq. (1), as
follows:

_ [1+(dr/dx)]:

R =
1() dr, dx?

B

(2

Ry (x) = re/14(dr/dx)?. 3)

In addition, the capacity v of the Cassini oval shell is given by
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Table 1
Geometrical parameters of Cassini oval shells, along with their linear, p;p,, and non-
linear, pgnia, buckling loads.

ke a(mm) c(mm) ro(mm) x,(mm) ppgs(n) Ponia Kim)
(MPa) (MPa)
0 95.343 0 95.343  95.343  1.420(12) 0.602(0.424)
0.100 95503  9.550 95.024  95.979  1.382(11) 0.641(0.464)
0.200 95999 19.200  94.059  97.900  1.287(11) 0.585(0.455)
0.300 96.878  29.063 92.416  101.144 1.110(10) 0.516(0.465)
0.400 98.229  39.292  90.028  105.796 0.900(10) 0.442(0.492)
0.500 100.198 50.099 86.773  112.024 0.678(9) 0.363(0.536)
0.600 103.021 61.812 82417  120.142 0.452(7) 0.262(0.579)
0.707 107.455 75.971  75.994  131.598 0.243(5) 0.156(0.642)
0.750 109.836 82.377  72.649  137.294 0.170(5) 0.127(0.745)
0.800 113.216 90.573  67.929  144.987 0.107(4) 0.096(0.899)
0.850 117.482 99.860 61.888  154.189 0.083(3) 0.067(0.805)
0.900 123.019 110.717 53.623  165.506 0.060(2) 0.051(0.853)
0.910 124.330 113.141 51.548 168.104 0.110(2) 0.095(0.856)
0.920 125.725 115.667 49.274  170.838 0.195(2) 0.172(0.882)
0.930 127.211 118.306 46.758 173.721 0.312(4) 0.267(0.854)
0.940 128.799 121.071 43.943 176.769  0.320(4) 0.282(0.880)
0.950 130.500 123.975 40.749  180.000  0.344(4) 0.298(0.867)
0.960 132.327 127.034 37.052 183.434 0.377(3) 0.267(0.707)
0.970 134.296 130.267 32.648  187.096 0.368(3) 0.282(0.766)
0.980 136.426 133.697 27.148 191.015 0.419(3) 0.341(0.813)
0.990 138.738 137.350 19.571 195226 0.618(3) 0.451(0.730)

Note: n = number of circumferential waves; Kim = pgnia/Prpa-

_ Ye o
v—271‘/; r2dx, 4

which, when combined with Eq. (1) and after integration [6] yields

V= mz{iln a+ 2k3+2kc,/1+k§)+§(1 - 2k3),/1+k3].

In this study, Cassini oval shells with 0 <k.<0.99 were evaluated
with the same wall thickness t = 2mm and capacity v = 3.63x10°mm?,
directly determined using Eq. (5). The shape indices, equation para-
meters, and semimajor and semiminor axes were determined as listed in
Table 1. To facilitate fabricating the laboratory scale models using rapid
prototyping (RP) technique, it was assumed that shells were made of
photosensitive resin. The material properties were assumed to be
elastic, as follows: Young's modulus E = 2510MPa; Poisson's ratio
1= 041.

()

2.2. Numerical computations

Serials of numerical computations were carried out for Cassini oval
shells, involving linear elastic bifurcation analysis of perfect geometry
and geometrically nonlinear elastic analysis with imperfections in-
cluded of imperfect geometry. The former analysis was performed using
the subspace iteration method whilst the later corresponded to the arc
length method. All computations were conducted using the ABAQUS
finite element system in line with ENV 1993-1-6 (2007) [27]. A fully
integrated S4 shell element was employed to prevent hourglassing ef-
fect. Convergence studies of shells were carried out in the linear elastic
bifurcation analysis [15,17,18,24], resulting in a total of 9600 elements
for the numerical model.

The uniform pressure p, = 1MPa was externally imposed on the
whole surface of each Cassini oval shell. In this case, the eigenvalue
obtained from the linear elastic bifurcation analysis corresponded di-
rectly to the linear buckling load, whereas the arc length value obtained
from the nonlinear elastic analysis was equal to the nonlinear buckling
load. Three spatial points of each model were constrained to avoid rigid
body motion, which is identical to CCS2013 [28] as follows: Uy = Uz
= 0,Ux = Uy = 0, Uy = Uz = 0. These boundary conditions led to no
excessive constraint due to the uniformly imposed pressure.

In addition, for the nonlinear elastic analysis, the eigenmode
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Fig. 2. Plot of the linear buckling load, p;p,, and the nonlinear buckling load, pgyias

versus the shape index, k..
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Fig. 3. Equilibrium paths of Cassini ovaloidal shells with the typical shape indices, k.

imperfection obtained from the corresponding linear elastic bifurcation
analysis was introduced into the perfect model, which had been ex-
tensively adopted to conservatively evaluate the load-carrying capacity
of shells of revolution in the preliminary design stage [27,29]. The
imperfection size-to-wall thickness ratio was assumed to be 0.4. Table 1
and Figs. 2 and 3 detail the results obtained from the numerical com-
putations.

3. Results and discussion
3.1. Linear elastic bifurcation analysis

The linear elastic buckling behaviors of Cassini oval shells are
fundamentally affected by the shape index, k.. As presented in Table 1
and Fig. 2, the linear buckling load, p, ,,, first decreased monotonically
with an increase in the shape index due to the decreasing meridional
curvature. This observation is similar to those of previous studies
conducted on the buckling of Cassini oval shells in the range
0.6<k. < 0.9 [6]. Notably, after an inflection point (k. = 0.9), a sig-
nificant increase in the buckling load was observed, probably because
the buckling behaviors of Cassini oval shells in this range are mainly
determined by two individual small axisymmetric shells. The mer-
idional curvature of these small shells rapidly increased with the shape
index. Nevertheless, some fluctuations in the buckling load were ob-
served, possibly because of the negative Gaussian curvature of the
middle transition zone connecting the two small shells. Comparable
fluctuations were also found in a previous study [6].

The linear buckling modes of the Cassini oval shells within the range
0<k.<0.9 were identical and took the shape of a number of cir-
cumferential waves (n), along with one longitudinal half-wave (m = 1),
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which is typical for shells of revolution with positive Gaussian curva-
ture [15,24]. The linear buckling modes in the range 0.9<k. < 0.92,
were in the form of two circumferential waves and one longitudinal
half-wave. After this range, the linear buckling modes of the Cassini
oval shells degenerated into the linear buckling modes of two in-
dividual small axisymmetric shells, each with positive Gaussian cur-
vature. The higher the linear buckling load was, the more the number of
circumferential waves was. The higher the meridional curvature was,
the more the number of circumferential waves is.

3.2. Geometrically nonlinear elastic analysis with imperfections included

As with the linear elastic bifurcation analysis, the shape index, k., of
imperfect Cassini oval shells fundamentally affects their nonlinear
elastic buckling behaviors. As shown in Table 1 and Fig. 2, the re-
lationship between the critical buckling load, p;y,, and the shape
index was nearly the same as the corresponding relationship of the
perfect Cassini oval shells, except for the k. = 0.1 case. This exception is
detailed later in this section. For 0<k, < 0.8, the ratio of the critical
buckling load, pgya, to the linear buckling load, p,g,, significantly
increased with the shape index. This suggests that the higher the shape
index is, the less sensitive to shape deviation the critical buckling load
is. However, for k. > 0.8, no obvious relation was determined between
the critical buckling load and the shape index, as the buckling behaviors
of Cassini oval shells in this range are strongly influenced by the geo-
metry of their middle zones along with the complicated eigenmode
imperfections.

The equilibrium paths of imperfect Cassini oval shells, plotted as the
applied load, p, versus the maximum deflection-to-wall thickness ratio,
Umax/t, indicated whether the structure is stable or not after the critical
point. The deflection, u,,,, was measured on the maximum deflection
point of shell, which was found at the end of the path. This choice was
due to the fact that the selected point located at the collapse zone of the
shell considered. According to the relationship between the applied
load and the deflection of this point, one can evaluate the character of
the shell after buckling. The obtained paths can be divided into three
types as follows: the unstable (type 1), metastable (type 2), and stable
(type 3) paths. Typical examples of these paths can be seen in Fig. 3.
First, unstable paths (type 1) were found for shells in the range
0<k. < 0.707, where the applied load first increased monotonically with
an increase in the deflection up to the peak value (the critical buckling
load), beyond which the applied load decreased; for example, the k. = 0
imperfect Cassini oval shell in Fig. 3 demonstrates this pattern. This is
the typical character for shells of revolution with positive Gaussian
curvature under external uniform pressure [30]. Furthermore, the slope
of the postbuckling line increased with a decrease in the shape index.
Second, metastable paths (type 2) were found for shells at k. = 0.707
and in the range 0.94<k. < 0.99, where the applied load first increased
monotonically with an increase in the deflection up to the peak value
(the critical buckling load), and then nearly leveled off; an example of
this is the k., = 0.707 imperfect Cassini oval shell depicted in Fig. 3.

Finally, stable paths (type 3) were found for shells in the range
0.75<k. < 0.93, where the applied load first increased monotonically
with an increase in the deflection up to the inflection point (the critical
buckling load), beyond which a relative increase was observed in the
applied load; an example of this is the k. = 0.91 imperfect Cassini oval
shell shown in Fig. 3. These findings confirmed the previous results [6]
and seem to be encouraging. However, it must be noted that despite
these shells exhibiting a stable character, their critical buckling loads,
reflecting load-carrying capacities, are very small compared with those
of barreled shells (0<k, < 0.4), particularly for spherical shells (k. = 0)
and nearly spherical shells (k. = 0.1). For engineering applications,
Cassini oval shells in this range appear to be an unfavorable shape for a
shell structure under external pressure, because a relatively high car-
rying load may lead to excessive shell deformation. In addition, the
critical buckling modes of imperfect Cassini oval shells at the peaks or
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Fig. 4. Meridional and circumferential radii of the k. = 0.1 imperfect Cassini oval shell.

inflection points of the paths were similar to the linear buckling modes
of perfect shells, because of the introduction of eigenmode imperfec-
tions. The postbuckling modes also had one or more indentations,
which is typical for imperfect shells of revolution under external uni-
form pressure [31-33].

Notably, according to Table 1 and Fig. 2, the critical buckling load
of the nearly spherical shell (k. = 0.1) was approximately 5.5% higher
than that of the spherical shell (k. = 0), although its linear buckling
load was slightly less than that of the spherical shell. This may be due to
the fact that the nearly spherical shell with a slightly asymmetric geo-
metry was less sensitive to shape imperfection than the spherical shell
with a highly symmetric geometry. Moreover, as illustrated in Fig. 4,
the meridional radius in the middle zone (equator) of the nearly
spherical shell (k. = 0.1) was slightly greater than the radius of the
spherical shell (180 mm), whereas the meridional radius in the re-
maining zone, as well as the circumferential radius in the whole range,
was less than 180 mm. To confirm this notable phenomenon, four small
imperfection size-to-wall thickness ratios, namely 0.1, 0.2, 0.3, and 0.4,
were examined for the buckling of nearly spherical and spherical shells.
A similar phenomenon can be identified in Fig. 5, confirming that the
load-carrying capacity of the k. = 0.1 imperfect Cassini oval shell could
be higher than that of the equivalent spherical shell with a smaller
imperfection size-to-wall thickness ratio. In addition, the spherical shell
for each imperfection size-to-wall thickness ratio collapsed in the form
of an elliptical local dent. The ratio of the major axis, a, to the minor
axis, b, increased with an increase in the imperfection size-to-wall
thickness ratio (parenthetical quantity in column 6 of Table 2), in-
dicating that a nearly perfect spherical shell with a small imperfection
size-to-wall thickness ratio collapses in the form of a nearly circular

P[MPa]

04} -
02} -
0.0 1 1 L
0.05 0.10 0.15 0.20 025
Ak

Fig. 5. Critical buckling loads of the k. = 0 and k. = 0.1 imperfect Cassini oval shells
versus the imperfection size-to-wall thickness ratio, A/t.
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local dent. The parenthetical quantity in the last column of Table 2
reveals that the predicted equivalent radius of a local dent, 7 = /ab, is
in good agreement with the radius r obtained from the empirical
equation [32]:

r = JRoH — H?/4,

where R, is the radius of the spherical shell, and H is the depth of the
local dent obtained from numerical results, a is the major axis of the
dent whist b is the minor axis.

It is inferred that a k. = 0.1 Cassini oval shell can be applied in
various engineering situations such as underwater tanks and pressure
hulls of shallow submersibles or submarines, along with artificial cap-
sules subjected to external pressure. In these situations, thin-walled
shells that inevitably have small shape imperfections are often designed
to withstand as much load as possible; buckling may be the main in-
fluencing factor in such designs. In addition, it may be boldly assumed
that many spheroidal natural organisms, such as biological cells
[34,35], pollen grains [36,37], and virus capsules [2,38], may have a
nearly spherical configuration — they may be Cassini oval shells with
very small shape indices, which can support considerably high loads
and collapse in the elastic range. The assumption requires further va-
lidation.

(6)

3.3. Experimentation

To experimentally check the effectiveness of the k. = 0.1 Cassini
oval shell, six laboratory scale models were tentatively fabricated,
measured and tested in this section. Three of them were nominally
identical k. = 0.1 Cassini oval shells, the others were nominally iden-
tical k. = 0 Cassini oval shells (spherical shells). Their nominal sizes are
listed in the first three rows of Table 1.

Shells were fabricated upright along the axis of revolution via Stereo
Lithography Appearance (SLA), which was based on the corresponding
three-dimensional CAD models with perfect geometry. All of them were
manufactured during the same building, then cleaned and post cured at
the same time. A fine point support was employed to ensure greater
surface finish. In order to easily get rid of the support inside shells after
the fabrication, two small circular holes (2o = 8°) with the radius of
6.75 mm were designed at two poles for each model, an example of the
k. = 0 Cassini oval shell is shown in Fig. 6(a). Photosensitive resin was
applied to fabricate shells, which had a Young's modulus of
E = 2510MPa, a Poisson's ratio of u = 0.41, a yield strength of 33 MPa
and a mass density of 1130 kg/m°.

Prior to test, the outer surface of each fabricated shell was precisely
measured through a three-dimensional optical scanner (Open
Technologies Corporation, < 0.02 mm). In this way, the CAD models
for shells can be obtained, which included deterministic geometric
imperfections imparted through the fabrication. Radius deviations of
each shell, indicating the geometric imperfections, are show in Fig. 7.
As can be seen, very small difference between the fabricated and perfect
shells was obtained, suggesting good repeatability and precision of the
fabrication.

After the measurements, each hole was tightly covered and
strengthened using a small carbon fiber reinforced composite cap. This
kind of composite material was much stronger than photosensitive
resin. The cap had a wall thickness of about 2 mm, and an arc angle of
2B = 37°, an example of the k. = 0 Cassini oval shell is shown in
Fig. 6(b). In this case, water could not fill into shells, and the effect of
holes on the shell buckling was minimized during the test. Then, shells
were slowly pressurized to collapse in a pressure vessel. The vessel had
an inner diameter of 200 mm, a total length of 1000 mm, a maximum
pressure of 20 MPa, and used water as the pressurizing medium. The
pressure inside the vessel was recorded using a pressure transducer, and
controlled by a hand-operated pump. All shells tended to collapse
suddenly with a significant decrease in pressure. After the tests, each
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Table 2
Geometrical parameters of local dents of the imperfect spherical shells.
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A(mm) H (mm) Ry (mm) r (mm) a (mm) b (Jab) (mm) r (r/r) (mm)
0.1 10.75 95.34 31.56 63.08 61.49(1.03) 31.14(0.987)
0.2 11.15 95.34 32.12 65.55 63.33(1.04) 32.22(1.003)
0.3 12.08 95.34 33.39 69.01 63.36(1.09) 33.06(0.990)
0.4 12.75 95.34 34.28 72.44 64.59(1.12) 34.20(0.998)
0.5 13.10 95.34 34.73 75.85 63.37(1.20) 34.66(0.998)

Fig. 6. Schematic representation of an experimental k.= 0
Cassini oval shell (a) and the corresponding fabricated photo-

graph (b).
1 # 2# Fig. 7. Radius deviations of fabricated
3 # . =0 Cassini oval shells from the perfect
[mm] [mm] [mm] geometry, along with k. = 0.1 Cassini oval
u shells.
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collapsed shell was fetched out from pressure vessel. The wall thickness
of each shell was measured using a micrometer gauge. The testing and
measuring results are given in Table 3 and Fig. 8, showing the rea-
sonable repeatability of experiments.

As listed in the table, the collapse pressure of k. = 0 Cassini oval
shells varied from 0.899 to 0.949, which might result from variations in
wall thickness and shape deviation (Fig. 7). The similar trend could be
found for k. = 0.1 Cassini oval shells. However, the average collapse
pressure (0.925 MPa) of k. = 0 Cassini oval shells was 7.6% lower than
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that (0.996 MPa) of k. = 0.1 Cassini oval shells. This finding confirmed
that in the case of small geometric imperfections the k., = 0.1 Cassini
oval shell had a better load carrying capacity than the equivalent
spherical shell. In addition, as observed in Fig. 8, shells collapsed in the
form of local fracture due to the brittleness of parent material. The
collapse location was relatively random, which might be attributed to
the random variations in fabricating thickness and shape deviation.
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Table 3
Measured thicknesses, tested collapse loads of k. = 0 and k. = 0.1
along with corresponding numerical loads.

Cassini oval shells,

Sample k=0 ke=0.1
1# 2# 3# 1# 2# 3#

tmax [mm] 1.992 2.000 1.978 2.011 2.011 1.991
tmin [mm] 1.934 1.690 1.895 1.901 1.943 1.889
tave [mm] 1.940 1.930 1.970 1.965 1.979 1.940
Prest[MPal] 0.899 0.949 0.927 0.973 1.066 0.948
Buumerics [MPa|] 0.895 0.907 0.871 0.957 0.990 0.934
Bumerics/ Prest 0.996 0.956 0.940 0.984 0.929 0.986

3.4. Numerical analysis of tested shells

To further study the buckling of tested shells and benchmark the
nonlinear numerical computations implemented in Section 2.2, the
geometrically nonlinear elastic analysis was performed for above six
fabricated k. = 0.1 and k. = 0 Cassini oval shells. This was done using
the arc length method available in ABAQUS code.

Mesh was generated uniformly and freely on each measured geo-
metry, including initial deterministic geometrical imperfections caused
by the fabrication. Shell element S4 was mainly chosen to avoid
hourglassing together with a few S3 shell elements. Mesh convergence
studies resulted in 16490 S4 elements and 502 S3 elements for the 1#
k. = 0 shell, 16449 S4 elements and 574 S3 elements for the 2# k. = 0
shell, 16422 S4 elements and 780 S3 elements for the 3# k. = 0 shell,
16191 S4 elements and 412 S3 elements for the 1# k. = 0.1 shell, 16021
S4 elements and 578 S3 elements for the 2# k. = 0.1 shell, 16340 S4
elements and 580 S3 elements for the 3# k. = 0.1 shell.

The elastic material modelling was assumed with the same prop-
erties as Section 2.2. The wall thicknesses were assumed to the average

1# 2#
Ke=0 test
— ‘/
Kc=0 numerics )
1# 2#
B ianciad
Kc=0.1 test

—

-
*
Kc=0.1 numerics
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measured results in Table 3. For the each numerical model, two re-
inforced composite caps covered on the corresponding holes were also
introduced with nominal geometry to simulate the strengthening effect.
The properties of the composite material were set as follows: Young's
modulus E = 10000MPa; Poisson's ratio g = 0.302. In addition, the load
and boundary conditions were similar to Section 2.2. The obtained
results were given in Table 3 and Fig. 8.

As can be seen from the table, the numerical buckling load, p,,,.crics>
varied from 0.871 to 0.907 for the k. = 0 Cassini oval shells, and from
0.934 to 0.990 for the k. = 0.1 Cassini oval shells. The predicted value is
92.9-99.6% of the tested one, suggesting a reasonable agreement and a
relatively precise computation. This small difference between theory
and experiment could be associated with the average wall thickness
assumption. These findings confirmed the previous experimental results
in Section 3.3 that the Cassini oval shell had a better load carrying
capacity than the equivalent spherical one. Furthermore, the equili-
brium paths of all shells behaved an unstable character, which was si-
milar to the k., = 0 Cassini oval shell in Fig. 3. The post buckling modes
at the end of the paths took the form of a local dent, which agreed well
with the experimental ones.

4. Conclusions

This paper presents the results of a numerical and partially experi-
mental study of the elastic buckling of Cassini oval shells subjected to
uniform external pressure, along with the effect of the shape index on
such buckling. A detailed comparison between k. = 0.1 Cassini oval and
spherical shells is made as well.

The study results reveal that the linear buckling load of a geome-
trically perfect Cassini oval shell first decreased monotonically with an
increase in the shape index, but after an inflection point (k. = 0.9), the
buckling load increased substantially, although some fluctuations

3# Fig. 8. Collapse modes of k. = 0 and k. = 0.1 Cassini oval shells
after test, along with numerical results.
—
—
-
#*
3#




J. Zhang et al.

existed. The linear buckling modes took the form of a number of cir-
cumferential waves and one longitudinal half-wave in the whole or
local surface. These findings are similar to those of previous studies
[6,15,24].

The relation between the critical buckling load of a geometrically
imperfect Cassini oval shell and its shape index was nearly the same as
the relation of the perfect Cassini oval shell and its shape index, except
for the k. = 0.1 Cassini oval shell. For 0<k, < 0.8, the higher the shape
index was, the less sensitive to shape deviation the critical buckling
load was. By contrast, for k. > 0.8, no obvious relation was observed.
The equilibrium paths of imperfect shells can be divided into three
types, namely the unstable, metastable, and stable paths. Although
some shells exhibited a stable character, their load-carrying capacities
were very low.

Notably, the critical buckling load of the nearly spherical shell
(k. = 0.1) was even higher than that of the spherical one (k. = 0) due to
the effects of imperfection sensitivity, circumferential radius, and
meridional radius. This finding was obtained from various small im-
perfection size-to-wall thickness ratios, validated against experimental
results and the corresponding computations. This indicates that the
k. = 0.1 Cassini oval geometry, which exhibited a high load-carrying
capacity, has potential applications in various fields such as underwater
tanks, pressure hulls, and artificial capsules.

However, some limitations of this study are worth noting. Although
our findings are encouraging, only eigenmode geometric imperfection
was taken into account. Future work should examine other types of
imperfections such as local dimples or axisymmetric dimples.
Additionally, the wall thickness of each shell in this work was assumed
to be constant. It may be beneficial to investigate cases in which the
wall thickness varies in the meridional direction.
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