چکیده
رشد ریشه اغلب گیاهان زراعی در اثر شوری خاک مهار می شود. ریشه با تعدیل متابولیسم، بیان ژنی و فعالیت پروتئین که منجر به تغییر در ترکیب دیواره سلولی، فرآیندهای نقل و انتقال، اندازه و شکل سلول، و معماری ریشه می گردد، به آن پاسخ می دهد. در اینجا، ما درباره اثرات تنش شوری بر دیواره سلولی که منجر به تغییر آنزیم، گرایش میکروفیبریل سلولز و رسوب پلی ساکارید غیرسلولزی در نواحی افزایش طول ریشه به عنوان عوامل مهم بازدارندگی افزایش طول ریشه می گردد تمرکز نموده و بر تغییرات دیواره سلولی مرتبط با تحمل تنش شوری و محدودیت آب ریشه ها تاکید نمودیم. تنش شوری باعث القاء تغییراتی در ترکیب دیواره انواع مختلف سلول های خاص ریشه از جمله افزایش رسوب لیگنین و سوبرین در سلول های اندودرمی و اگزودرمی می گردد. این تغییرات با جلوگیری از اتلاف آب و تغییر مسیر نقل و انتقال یون در جهت منفعت گیاه عمل می نمایند. ما نشان دادیم که ترکیب یون های Na+ با اجزای دیواره سلولی می تواند بر عبور Na+ تاثیر گذاشته و Na+ قادر است بر ترکیب یون های دیگر اثر گذاشته و مانع کارکرد پکتین در خلال رشد سلولی گردد. وقوع تفاوت های طبیعی در ساختار دیواره سلولی، منابع جدیدی را برای اصلاح محصولات زراعی فراهم می نماید که دارای تحمل پذیری بیشتری نسبت به شوری می گردند.
1. مقدمه
تکامل گیاه منجر به آرایه وسیعی از مکانیزم های تحمل تنش مرتبط با افزایش شوری خاک می گردد. با این حال، در اغلب غلات، وقتی شوری خاک به بیش از 4 دسی زیمنس بر متر معادل حدوداً 40 میلی مول NaCl می رسد، مختل می گردد. افزایش شوری خاک، گیاهان را در معرض سدیم (Na+) و کلر (Cl−) یونی قرار داده و به آبشاری از پاسخ ها در گیاه با توجه به اجزای یونی و اسمزی تنش شوری منتهی می گردد [1،2].
تنش شوری با ایجاد تغییر در بیان ژنی غیرمستقیم بر خواص دیواره سلولی تاثیر می گذارد اما Na+ نیز می تواند مستقیماً و به صورت فیزیکی با اجزای دیواره سلولی فعل و انفعالات نموده، و خواص شیمیایی آن ها را تغییر دهد [3]. افزایش شوری خاک منجر به تجمع Na+ در آپوپلاست و در نتیجه افزایش فعل و انفعالات بین Na+ و مناطق با بار منفی در پلیمرهای دیواره سلولی گشته و بر pH آپوپلاستیک نیز تاثیر می گذارد. شوری باعث قلیایی شدن موقت آپوپلاست شده، و این امر می تواند رشد را در چارچوب نظریه رشد اسید محدود سازد [4،5]: اکسین با فعالسازی ATPase - H+ غشای پلاسمایی شده و پروتون ها به سوی آپوپلاست دفع شده و اسیدی شدن آپوپلاستیک باعث سست شدن دیواره سلولی در اثر فعالسازی اکسپانسین و آنزیم های بازسازی دیگر و در نتیجه سست شدن دیواره سلولی می گردد. از این رو، رشد در اثر کاهش پروتون های آپوپلاستیک آزاد محدود شده و باعث تغییر در pH آپوپلاستیک خارج از محدوده ای شود که مطلوب سست شدن دیواره سلول ها می باشد [4]، اگر چه در ذرت بازدارندگی رشد در اثر شوری با ظرفیت سلول های اپیدرمی برای اسیدی کردن دیواره آن ها ارتباطی ندارد [6].
Abstract
The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na+ ions to cell wall components might influence the passage of Na+ and that Na+ can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.
1. Introduction
Plant evolution has resulted in a large array of mechanisms to tolerate the stresses associated with increased soil salinity. However, for most cereal crops the growth of roots is disrupted when soil salinity exceeds 4 dS/m, equivalent to about 40 mM NaCl. Increased soil salinity exposes plants to ionic sodium (Na+) and chloride (Cl−), which leads to a cascade of responses in the plant due to the ionic and osmotic components of salt stress [1,2].
Salt stress can indirectly affect cell wall properties by causing changes in gene expression, but Na+ can also physically interact with the cell wall components directly, and change their chemical properties [3]. An increase in soil salinity results in accumulation of Na+ in the apoplast, which can lead to an increase in interactions between Na+ and negatively charged sites within cell wall polymers, and also influence apoplastic pH. Salinity causes transient alkalinisation of the apoplast, and this could limit growth in the context of the acid growth theory [4,5]: Auxin activates plasma membrane H+-ATPases and protons are extruded into the apoplast, apoplastic acidification induces cell wall loosening by activating expansins and other remodelling enzymes resulting in loosening of the cell wall. Hence, growth could be limited by a decrease in free apoplastic protons causing a shift in the apoplastic pH away from the range that favors cell-wall loosening [4], although in maize the inhibition of growth as a result of salinity was not associated with the capacity of the epidermal cells to acidify their walls [6].
چکیده
1. مقدمه
2. توانایی ترکیب Na+ به اجزاء دیواره سلولی
3. تغییر در ترکیب شیمیایی دیواره های سلولی ریشه در پاسخ به تیمار نمک
4. تغییرات کارکرد دیواره سلولی در اثر شوری
5. موانع انتشار ریشه و تغییرات شوری
6. فعل و انفعالات نمک با پروتئین های دیواره سلولی
7. چشم انداز آتی
ABSTRACT
1. Introduction
2. Na+ can bind to cell wall constituents
3. Changes in the chemical composition of root cell walls in response to salt treatments
4. Changes in cell wall function due to salinity
5. Root diffusion barriers and changes in salinity
6. Salt interactions with cell wall proteins
7. Future prospects