روش جدیدی برای ردیابی نگاه با استفاده از مدل الگوی محلی و بردار رگرسور پشتیبانی
ترجمه شده

روش جدیدی برای ردیابی نگاه با استفاده از مدل الگوی محلی و بردار رگرسور پشتیبانی

عنوان فارسی مقاله: روش جدیدی برای ردیابی نگاه با استفاده از مدل الگوی محلی و بردار رگرسور پشتیبانی
عنوان انگلیسی مقاله: A novel method for gaze tracking by local pattern model and support vector regressor
مجله/کنفرانس: پردازش سیگنال - Signal Processing
رشته های تحصیلی مرتبط: مهندسی کامپیوتر و برق
گرایش های تحصیلی مرتبط: هوش مصنوعی، مهندسی الگوریتم ها و محاسبات، هوش ماشین
کلمات کلیدی فارسی: ردیابی نگاه، ویزگی های بافت، بر پایه الگوی پیکسلی (PPBTF)، مدل الگوی محلی (LPM)، بردار رگرسو پشتیبانی (SVR)
کلمات کلیدی انگلیسی: Gaze tracking - PPBTF - LPM - SVR
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: scopus - master journals - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.sigpro.2009.10.014
دانشگاه: گروه مهندسی الکترونیک، دانشگاه صنعتی دالیان، چین
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2010
ایمپکت فاکتور: 5.326 در سال 2019
شاخص H_index: 125 در سال 2020
شاخص SJR: 1.064 در سال 2019
شناسه ISSN: 0165-1684
شاخص Quartile (چارک): Q1 در سال 2019
صفحات مقاله انگلیسی: 10
صفحات ترجمه فارسی: 20 (1 صفحه رفرنس انگلیسی)
فرمت مقاله انگلیسی: pdf
فرمت ترجمه فارسی: pdf و ورد تایپ شده با قابلیت ویرایش
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
ترجمه شده از: انگلیسی به فارسی
وضعیت ترجمه: ترجمه شده و آماده دانلود
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا منابع داخل متن درج یا ترجمه شده است: بله
آیا توضیحات زیر تصاویر و جداول ترجمه شده است: بله
آیا متون داخل تصاویر و جداول ترجمه شده است: بله
کد محصول: 11401
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در داخل متن و انتهای مقاله درج شده است
ترجمه فارسی فهرست مطالب

چکیده


مقدمه


2- روش دید دو چشمی 


3- ویژگی های چشم ها


3.1 الگوریتم تعمیم یافته PPBTF


3.2 مدل الگوی محلی


4- نتایج تجربی


4.1 دستگاه آزمایشگاهی 


4.2 آنالیز پارامتر ها 


4.3 آزمایشات مقایسه ای 


5- نتیجه گیری

فهرست انگلیسی مطالب

Abstract


1. Introduction


2. Binocular vision method


3. Features of eyes


3.1. Improved PPBTF algorithm


3.2. Local pattern model


4. Experimental results


4.1. Experimental setup


4.2. Parameters analysis


4.3. Comparative experiments


5. Conclusion

نمونه ترجمه فارسی مقاله

چکیده


این مقاله بر اساس مدل الگوی محلی (LPM) و بردار رگرسو پشتیبانی(SVR) روشی برای ردیابی نگاه، تحت حرکت مجاز سر ارائه می دهد. LPM ترکیبی از ویزگی های بافت، بر پایه الگوی پیکسلی (PPBTF) و ویژگی های محلی دید دو چشمی بافت (LBP) برای ارزیابی مشخصات بافت از طریق مشخصات چشم به کاربرده شد و یک طرح جدید دوچشمی برای تعیین مختصات فضایی چشم ها استفاده گردید. مشخصات بافت ازLPM و هسبتگی فضایی به منظور ایجاد یک نقشه مسیریابی و در نهایت برای ردیابی نگاه در حرکت مجاز سر به بردار رگرسور (SVR) داده شد. نتایج تجربی نشان می دهد که روش پیشنهادی درتخمین مسیر نگاه دقت بهتری نسبت به روش بازتاب حالت مرکز قرینه (PCCR) دارد. 


مقدمه


خیره شدن چشم که به مسیرنگاه بر می گردد، تمرکز و توجه و علاقه یک شخص رانشان می دهد. اکثر تکنیک های ردیابی نگاه بر اساس دید انسان است یعنی از دوربینهایی برای عکس برداری از چشم ها استفاده می شود. ازآن جاکه برخی از این روشهای بر اساس دوربین، به استفاده از تجهیزات خاصی از جمله محافظ چانه،الکترود [25] و دوربینهای قابل نصب روی سر [26] برای مصرف کنندگان نیاز دارد، تا حدودی آزاد دهنده است. روش پیشنهادی در این مقاله به این علت که به تجهیزات خاصی نیاز ندارد، آزار دهنده نمی باشد. 


5- نتیجه گیری


این مقاله یک طرح جدید ردیابی نگاه بر اساس مدل الگوی محلی و بردار رگسور پیشنهادی ارائه می دهد. روش دید دو چشمی برای محاسبه مختصات فضایی چشم ها و الگوریتم LPM برای تفسیر مشخصه های چشم ها استفاده شده است. با ترکیب مختصات فضایی و مشخصه های LPM به عنوان ورودی SVR تابع ردیابی مسیر نگاه و مختصات صفحه را می توان پیش بینی کرد. نتایج آزمایشگاهی، موثر بودن روش پیشنهادی برای نگاه را در مقایسه با سایر روش ها نشان می دهد. درکارهای آینده این روش با افزایش نقاط تخمین گسترش خواهد یافت و به رابطه انسان ارتقا خواهد یافت. 

نمونه متن انگلیسی مقاله

Abstract


This paper presents a novel eye gaze tracking method with allowable head movement based on a local pattern model (LPM) and support vector regressor (SVR). The LPM, a combination of improved pixel-pattern-based texture feature (PPBTF) and local-binary-pattern texture feature (LBP), is employed to calculate texture features from the characteristics of the eyes and a new binocular vision scheme is adopted to detect the spatial coordinates of the eyes. The texture features from LPM and the spatial coordinates together are fed into support vector regressor (SVR) to match a gaze mapping function, and subsequently to track gaze direction under allowable head movement. The experimental results show that the proposed approach results in better accuracy in estimating the gaze direction than the state-of-the-art pupil center corneal reflection (PCCR) method.


1. Introduction


Eye gaze, referring to the direction of line of sight, reveals a person’s focus of attention and interest. The majority of existing gaze tracking techniques are vision based, i.e., cameras are used to capture images of the eyes. Some of these camera-based techniques are intrusive since special equipments such as chin rests, electrodes [25], and head-mounted cameras [26] are required on users. The scheme proposed in this paper is non-intrusive, that is, users are not equipped with any devices.


5. Conclusion


This paper presents a novel eye gaze-tracking scheme based on local pattern model and support vector regressor. The binocular vision method is adopted to calculate the spatial coordinates of the eyes and the LPM algorithm is utilized to describe the features of the captured eyes. With the combination of the spatial coordinates and LPM features as the input to SVR, the mapping function of gaze direction and screen coordinates can be predicted. The experimental results demonstrate the effectiveness of the proposed eye gaze tracking approach when compared with the state-of-the-art schemes. As part of future work, the proposed scheme will be extended to research such as increasing the number of estimated points and the range of the allowable head movement, and will be applied to human–computer interaction.

تصویری از فایل ترجمه

          


(جهت بزرگ نمایی روی عکس کلیک نمایید)

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۲۱,۸۰۰ تومان
خرید محصول
  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

روش جدیدی برای ردیابی نگاه با استفاده از مدل الگوی محلی و بردار رگرسور پشتیبانی
مشاهده خریدهای قبلی
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها