پهباد زیرآبی حاوی دوربین پانورامیک جهت شناسایی خودکار ماهی براساس یادگیری عمیق
ترجمه شده

پهباد زیرآبی حاوی دوربین پانورامیک جهت شناسایی خودکار ماهی براساس یادگیری عمیق

عنوان فارسی مقاله: پهباد زیرآبی حاوی دوربین پانورامیک جهت شناسایی خودکار ماهی براساس یادگیری عمیق
عنوان انگلیسی مقاله: Underwater-Drone With Panoramic Camera for Automatic Fish Recognition Based on Deep Learning
مجله/کنفرانس: IEEE Access
رشته های تحصیلی مرتبط: مهندسی مکانیک و علوم و فنون هوایی
گرایش های تحصیلی مرتبط: هوافضا، طراحی کاربردی
کلمات کلیدی فارسی: تصویر پانورامیک 360 درجه، پهباد زیرآبی، شناسایی ماهی، یادگیری عمیق، سخت افزار متن‌باز
کلمات کلیدی انگلیسی: 360-degree panoramic image - underwater-drone - fish recognition - deep learning - open source hardware
نمایه: scopus - master journals - JCR - DOAJ
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2018.2820326
دانشگاه: دانشکده علوم و مهندسی، دانشگاه ریتسومیکان، ژاپن
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 4.983 در سال 2019
شاخص H_index: 86 در سال 2020
شاخص SJR: 0.775 در سال 2019
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2019
صفحات مقاله انگلیسی: 7
صفحات ترجمه فارسی: 16 (1 صفحه رفرنس انگلیسی)
فرمت مقاله انگلیسی: pdf
فرمت ترجمه فارسی: pdf و ورد تایپ شده با قابلیت ویرایش
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
ترجمه شده از: انگلیسی به فارسی
وضعیت ترجمه: ترجمه شده و آماده دانلود
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا منابع داخل متن درج یا ترجمه شده است: بله
آیا توضیحات زیر تصاویر و جداول ترجمه شده است: بله
آیا متون داخل تصاویر و جداول ترجمه شده است: بله
کد محصول: 11504
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در داخل متن و انتهای مقاله درج شده است
ترجمه فارسی فهرست مطالب

چکیده


1- مقدمه


2- طراحی پهباد زیرآبی


الف) ماژول محاسباتی اصلی و گسترش دادن آن


ب) طراحی چارچوب


ج) تولید تصویر پانورامیک 360 درجه


3- شناسایی خودکار ماهی براساس یادگیری عمیق


الف) یادگیری عمیق و ساختار شبکه


ب) مجموعه‌ داده و داده افزایی


4- نتایج تجربی


الف) پهباد و دوربین پانورامیک 360 درجه


ب) نتایج تشخیص ماهی


ج) بحث در مورد پهبادهای دیگر


5- نتیجه‌گیری

فهرست انگلیسی مطالب

ABSTRACT


I. INTRODUCTION


II. DESIGN OF THE UNDERWATER DRONE


A. BASIC COMPUTE MODULE AND EXTENSIONS


B. FRAME DESIGN


C. 360-DEGREE PANORAMIC IMAGE GENERATION


III. AUTOMATIC FISH RECOGNITION BASED ON DEEP LEARNING


B. DATA SET AND DATA AUGMENTATION


IV. EXPERIMENTAL RESULTS


A. DRONE AND 360-DEGREE PANORAMIC CAMERA


B. FISH RECOGNITION RESULTS


C. DISCUSSION WITH OTHER DRONES


V. CONCLUSION

نمونه ترجمه فارسی مقاله

چکیده


پیشرفت بالای فن‌آوری پهباد سبب استفاده از پهبادها در گستره‌ی متنوعی از حوزه‌ها شده است. همچنین، از این پهبادها عمدتا به‌عنوان وسیله‌ی حمل‌ونقل هوایی بدون سرنشین استفاده می‌شود. ما اعتقاد داریم که پهبادهای زیرآبی به یک موضوع تحقیقاتی مهم در آینده‌ی نزدیک تبدیل خواهند شد و یک بازار در این زمینه ایجاد می‌گردد. ما یک پهباد زیرآبی با دوربین پانورامیک 360 درجه که به‌عنوان چشم پهباد عمل می‌کند را توسعه دادیم. طراحی براساس سخت‌افزار متن- ‌باز انجام گرفته است که این طراحی به‌عنوان یک متن- ‌باز برای مشارکت جهت تولید نوآوری از جمله در پهباد به اشتراک گذاشته خواهد شد. کارکرد دوربین پانورامیک 360 درجه از طریق اصلاح کردن تصاویر گرفته شده به‌وسیله‌ی دو عدسی چشم ماهی ایجاد شده است. پهباد زیرآبی به‌وسیله‌ی گسترش دادن ماژول محاسباتی Raspberry Pi طراحی شده است، چارچوب آن نیز به‌وسیله‌ی OpenSCAD طراحی گردیده است و صفحه‌ی مدار چاپی نیز با استفاده از MakePro طراحی شده است. ما جهت بررسی عمکلرد پهباد زیرآبی، بر روی تشخیص ماهی متمرکز شده‌ایم تا گونه‌های ماهی را در یک دریاچه‌ی طبیعی جهت کمک به محافظت محیط‌زیست اصیل بررسی نماییم. شناسایی ماهی براساس یادگیری عمیق انجام شده است که امروزه یک موضوع بسیار مهم در زمینه‌ی نحقیق هوش مصنوعی به‌شمار می‌آید. نتایج آزمایشگاهی نشان می‌دهد که عمکلرد پهباد زیرآبی به‌صورت خودکار در غواصی در داخل دریاچه به‌دست می‌آید. تصاویر پانورامیک 360 درجه به‌‌صورت درست تولید شده است. شناسایی ماهی به‌وسیله‌ی یادگیری عمیق، 87% دقت به‌دست می‌آورد. 


5- نتیجه‌گیری


این پژوهش یک پهباد زیرآبی را ارائه داده است که مجهز به عدسی‌های چشم ماهی و کارکرد یک دوربین پانورامیک 360 درجه‌ برای ایجاد کردن تصاویر پانورامیک با استفاده از یک الگوریتم تولید کردن تصویر بوده است. تولید کردن تصویر پانورامیک 360 درجه‌ و پهباد زیرآبی با استفاده از سخت‌افزار متن‌باز توسعه داده شده است؛ ماژول‌های محاسباتی بر روی یک ماژول محاسباتی Raspberry Pi گسترش داده شده‌ است. ما یک پهباد زیرآبی خودکار را پیاده‌سازی کرده‌ایم و نتایج را در یک دریاچه به‌دست آورده‌ایم. تصاویر پانورامیک 360 به‌صورت صحیح تولید شده‌اند. نتایج آزمایشگاهی نشان می‌دهد که تقریبا همه‌ی گونه‌های ماهی با نرخ تشخیص بیش از 85% با استفاده از AlexNet و GoogLeNet (در AlexNet، 87% تشخیص به‌دست آمده است) تشخیص داده شده‌اند. زمان تشخیص برای 115 تصویر، 6 ثانیه طول کشیده است. پس ممکن است AlexNet به دلیل دقت بالا برای کاربرد در زمان واقعی استفاده گردد. ما در آینده قصد داریم جهت بهبود پهباد زیرآبی، از آن در سطح عملی استفاده کنیم.

نمونه متن انگلیسی مقاله

Abstract


Highly developed drone technology enables the use of drones in a wide variety of areas. However, those drones are mainly used in the unmanned aerial vehicles. We believe that underwater drones will become a big research topic and find a market in the near future. We developed an underwater drone with a 360° panoramic camera acting as the “eye”of the drone. The designs are based on the open-source hardware and will be shared as an open-source for contributing to the innovation of manufacturing including drone. The function of the 360° panoramic camera is generated by correcting the images taken by two fisheye lenses. The underwater drone was designed by extending the Raspberry Pi compute module, the frame was designed by OpenSCAD, and the printed circuit board was designed by MakePro. As for the application of the underwater drone, we focused on fish recognition for investigating fish species in a natural lake to help protect the original environment. Fish recognition is based on deep learning, which is the biggest topic in the artificial intelligence research field today. Experimental results show that the function of the underwater drone achieved at diving in the leak automatically. The 360° panoramic images were generated correctly. Fish recognition achieved 87% accuracy by deep learning.


V. CONCLUSION


This paper presented an underwater drone equipped with fisheye lenses and with the function of a 360-degree panoramic camera for taking panoramic images by using an image generation algorithm. The 360-degree panoramic image generation and the underwater drone were developed with open-source software; the compute modules were extended on a Raspberry Pi compute module. We implemented an automatic underwater drone and conducted experiments in a lake. The 360-degree panoramic images were generated correctly. The experimental results showed that almost all fish species were recognized with a recognition rate higher than 85% with AlexNet and GoogLeNet (AlexNet achieved 87%). The recognition time for 115 images was 6 seconds. Hence, AlexNet may be used in a real-time application with high accuracy. In the future, we aim to improve the underwater drone to a practical level.

تصویری از فایل ترجمه

          


(جهت بزرگ نمایی روی عکس کلیک نمایید)

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۲۰,۸۰۰ تومان
خرید محصول
  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

پهباد زیرآبی حاوی دوربین پانورامیک جهت شناسایی خودکار ماهی براساس یادگیری عمیق
مشاهده خریدهای قبلی
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها