تشخیص بیماری آلزایمر در مجموعه داده های کوچک
ترجمه شده

تشخیص بیماری آلزایمر در مجموعه داده های کوچک

عنوان فارسی مقاله: تشخیص بیماری آلزایمر در مجموعه داده های کوچک: چشم انداز انتقال دانش
عنوان انگلیسی مقاله: Detecting Alzheimer’s Disease on Small Dataset: A Knowledge Transfer Perspective
مجله/کنفرانس: مجله انفورماتیک پزشکی و مهندسی پزشکی - Journal of Biomedical and Health Informatics
رشته های تحصیلی مرتبط: پزشکی و مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: بیوانفورماتیک پزشکی، هوش مصنوعی
کلمات کلیدی فارسی: تشخیص به کمک کامپیوتر، مجموعه داده کوچک، سازگاری دامنه، بیماری آلزایمر، rs-fMRI، یادگیری ماشین
کلمات کلیدی انگلیسی: Computer-aided diagnosis - Small dataset - Domain adaptation - Alzheimer’s disease - rs-fMRI - Machine learning
شناسه دیجیتال (DOI): https://doi.org/10.1109/JBHI.2018.2839771
دانشگاه: دانشکده اتوماسیون، پردازش تصویر و کنترل هوشمند آزمایشگاه وزارت آموزش چین، دانشگاه علم و صنعت Huazhong، ووهان، چین
صفحات مقاله انگلیسی: 9
صفحات مقاله فارسی: 23
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 6.977 در سال 2020
شاخص H_index: 125 در سال 2021
شاخص SJR: 1.293 در سال 2020
ترجمه شده از: انگلیسی به فارسی
شناسه ISSN: 2168-2194
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه: ترجمه شده و آماده دانلود
فرمت ترجمه فارسی: pdf و ورد تایپ شده با قابلیت ویرایش
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
مقاله بیس: خیر
مدل مفهومی: ندارد
کد محصول: 11744
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
پرسشنامه: ندارد
متغیر: ندارد
درج شدن منابع داخل متن در ترجمه: بله
ترجمه شدن توضیحات زیر تصاویر و جداول: بله
ترجمه شدن متون داخل تصاویر و جداول: خیر
رفرنس در ترجمه: در داخل متن و انتهای مقاله درج شده است
نمونه ترجمه فارسی مقاله

چکیده

 تشخیص به کمک کامپیوتر (CAD) موضوع جذابی در تحقیقات بیماری آلزایمر (AD) است. الگوریتم های بسیاری مبتنی بر مجموعه داده های آموزشی نسبتا بزرگ قرار دارند. با این حال، معمولا بیمارستان های کوچک نمی توانند نمونه های آموزشی کافی به منظور طبقه بندی توانمند جمع آوری کنند. اگر چه به اشتراک گذاری داده ها در تحقیقات علمی در حال گسترش است، اما مشخص نیست که آیا مدلی بر اساس یک مجموعه داده مناسب برای سایر منابع داده مطلوب است یا خیر. با استفاده از مجموعه داده کوچک یک بیمارستان محلی و مجموعه داده بزرگی که از اقدامات تصویر برداری بیماری آلزایمر (ADNI) به اشتراک گذاشته شده است، آنالیز ناهمگن انجام دادیم و دریافتیم که منابع داده تصویربرداری رزونانس مغناطیسی مرحله ای (fMRI) مختلف توزیع نمونه های متفاوتی را در فضای ویژگی نشان می دهند. علاوه بر این، روش انتقال دانش موثری را برای کاهش اختلاف در مجموعه داده های مختلف پیشنهاد دادیم و بهبود دقت طبقه بندی در مجموعه داده هایی با نمونه های آموزشی ناکافی پیشنهاد دادیم. دقت اینکار تقریبا به اندازه 20٪ در مقایسه با مدلی که تنها بر اساس مجموعه داده اصلی کوچک سخته شده بود، افزایش یافته است. نتایج نشان داد که رویکرد پیشنهادی، روش جدید و مؤثری برای CAD در بیمارستان هایی با مجموعه داده های آموزشی کوچک می باشد. این روش چالش اندازه نمونه محدود در تشخیص AD را بر طرف می کند، این چالش مشکل رایجی رایج است اما توجه کافی به آن نمی شود. علاوه بر این، این مقاله دیدگاه جدیدی را برای استفاده موثر از داده های چند منبع برای تشخیص بیماری های عصبی ارائه می دهد.

1. مقدمه  

مشکلات مرتبط با جمعیت افراد مسن به طور فزاینده ای جدی تر می شود، زیرا مردم بیشتر عمر می کنند و نرخ باروری در اکثر کشورها کاهش می یابد. علاوه بر این، چون غالب جمعیت افراد مسن هستند، افراد بیشتری در معرض خطر ابتلا به زوال عقل قرار دارند. در حال حاضر تقریبا 47 میلیون نفر در جهان زندگی می کنند که مبتلا به زوال عقل هستند، و پیش بینی می شود این تعداد تا سال 2050 بیش از 131 میلیون نفر افزایش یابد [1]. 

6- نتیجه گیری

در این مقاله، ما نشان دادیم که وظیفه طبقه بندی AD با استفاده از یک مجموعه داده کوچک را می توان با استفاده از روش همترازی فضای فرعی اصلاح شده بهتر انجام داد. این روش می تواند به طور موثر دقت طبقه بندی در مجموعه های کوچک نمونه را بهبود بخشد. محققان می توانند از این روش برای از بین بردن چالش اندازه نمونه های بسیار محدود استفاده کنند، مخصوصا هنگامی که جمع آوری داده های تصویر برداری عصبی دشوار است و نیاز به تشخیص کامپیوتری با نمونه های محدود باشد. همچنین این مقاله می تواند به محققان کمک کند تا از داده های به اشتراک گذاشته شده بهتر استفاده کنند و تبادل داده جمع آوری شده را ارتقاء بخشند. 

نمونه متن انگلیسی مقاله

Abstract 

Computer-aided diagnosis (CAD) is an attractive topic in Alzheimer's disease (AD) research. Many algorithms are based on a relatively large training dataset. However, small hospitals are usually unable to collect sufficient training samples for robust classification. Although data sharing is expanding in scientific research, it is unclear whether a model based on one dataset is well suited for other data sources. Using a small dataset from a local hospital and a large shared dataset from the AD neuroimaging initiative, we conducted a heterogeneity analysis and found that different functional magnetic resonance imaging data sources show different sample distributions in feature space. In addition, we proposed an effective knowledge transfer method to diminish the disparity among different datasets and improve the classification accuracy on datasets with insufficient training samples. The accuracy increased by approximately 20% compared with that of a model based only on the original small dataset. The results demonstrated that the proposed approach is a novel and effective method for CAD in hospitals with only small training datasets. It solved the challenge of limited sample size in detection of AD, which is a common issue but lack of adequate attention. Furthermore, this paper sheds new light on effective use of multi-source data for neurological disease diagnosis.

I. INTRODUCTION

THE problems associated with the aging population are becoming increasingly serious as people live longer and fertility rates decline in most countries. Furthermore, because a greater proportion of individuals are elderly, more people are at high risk of developing dementia. Currently, approximately 47 million people worldwide live with dementia, and this number is predicted to increase to more than 131 million by 2050 [1].

VI. CONCLUSION

In this paper, we demonstrated that the AD classification task using a small dataset can be better solved using the modified subspace alignment method. This method can effectively improve the accuracy of the classification in small sample sets. Researchers can use this method to relieve the challenge of extremely limited sample size, particularly when collecting neuroimaging data is difficult and computer-aided diagnoses with limited samples are required. Our work may also assist researchers to make better use of shared data and promote the exchange of collected data.

تصویری از فایل ترجمه

          

(جهت بزرگ نمایی روی عکس کلیک نمایید)

ترجمه فارسی فهرست مطالب

چکیده

1. مقدمه  

2. روش ها

الف. روش تراز کردن فضای فرعی اصلاح شده

ب. طبقه بندی کننده آنالیز تشخیصی

3. ست آپ آزمایش

الف. جمع آوری داده ها و پیش پردازش 

ب. استخراج ویژگی 

ج. روش آزمایش

4. نتایج

5- بحث و گفتگو

6- نتیجه گیری

منابع

فهرست انگلیسی مطالب

Abstract

I. INTRODUCTION

II. METHODS

A. Modified Subspace Alignment Method

B. Discriminant Analysis Classifier

III. EXPERIMENTAL SETUP

A. Data collection and preprocessing

B. Feature extraction

C. Experimental procedure

IV. RESULTS

V. DISCUSSION

VI. CONCLUSION

REFERENCES

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- اصل مقاله انگلیسی با فرمت ورد (word) با قابلیت ویرایش
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۳۶,۸۰۰ تومان
خرید محصول
تشخیص بیماری آلزایمر در مجموعه داده های کوچک
مشاهده خریدهای قبلی
مقالات مشابه
نماد اعتماد الکترونیکی
پیوندها