یک سیستم شاخص ارزیابی برای ارزیابی سرمایه فکری بر اساس یادگیری ماشینی
ترجمه شده

یک سیستم شاخص ارزیابی برای ارزیابی سرمایه فکری بر اساس یادگیری ماشینی

عنوان فارسی مقاله: یک سیستم شاخص ارزیابی برای ارزیابی سرمایه فکری بر اساس یادگیری ماشینی
عنوان انگلیسی مقاله: An evaluation index system for intellectual capital evaluation based on machine learning
مجله/کنفرانس: مجله مهندسی اسکندریه - Alexandria Engineering Journal
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: مدیریت کسب و کار، سیستم اطلاعاتی پیشرفته
کلمات کلیدی فارسی: سرمایه فکری؛ یادگیری ماشینی (ML)؛ روش جنگل تصادفی (RF)؛ ماشین بردار پشتیبان (‏SVM)
کلمات کلیدی انگلیسی: Intellectual capital - Machine learning (ML) - Random forest (RF) - Support vector machine (SVM)
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: scopus - master journals - JCR - DOAJ - Master ISC
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.aej.2020.11.006
دانشگاه: ایستگاه تحقیقاتی فوق دکتری بانک هاربین ، چین
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: 4.384 در سال 2020
شاخص H_index: 58 در سال 2021
شاخص SJR: 0.584 در سال 2020
شناسه ISSN: 1110-0168
شاخص Quartile (چارک): Q1 در سال 2020
صفحات مقاله انگلیسی: 6
صفحات ترجمه فارسی: 13 (1 صفحه رفرنس انگلیسی)
فرمت مقاله انگلیسی: pdf و ورد تایپ شده با قابلیت ویرایش
فرمت ترجمه فارسی: pdf و ورد تایپ شده با قابلیت ویرایش
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
ترجمه شده از: انگلیسی به فارسی
وضعیت ترجمه: ترجمه شده و آماده دانلود
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
آیا این مقاله فرضیه دارد: ندارد
آیا منابع داخل متن درج یا ترجمه شده است: بله
آیا توضیحات زیر تصاویر و جداول ترجمه شده است: بله
آیا متون داخل تصاویر و جداول ترجمه شده است: بله
کد محصول: 11920
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در داخل متن و انتهای مقاله درج شده است
ضمیمه: ندارد
ترجمه فارسی فهرست مطالب

چکیده


1. مقدمه


2. روش شناسی


2.1 طراحی سیستم شاخص ارزیابی


2.2 پیش پردازش داده ها


2.3 طبقه بندی RF


3. نتیجه گیری


منابع

فهرست انگلیسی مطالب

Abstract


1. Introduction


2. Methodology


2.1. Design of evaluation index system


2.2. Data preprocessing


2.3. RF classification


2.4. SVM evaluation


3. Conclusions


References

نمونه ترجمه فارسی مقاله

چکیده


در حال حاضر هنوز یک سیستم شاخص ارزیابی کامل سرمایه فکری در میان شرکت ها وجود ندارد. فقدان چنین سیستمی مانع از تبدیل ملایم سرمایه به ارزش شرکت می شود. بنابراین، این مقاله تلاش می کند تا یک سیستم شاخص ارزیابی موثر و عینی برای سرمایه فکری ایجاد کند. اولا داده های مربوط به سرمایه فکری برخی شرکت ها، از بازار سرمایه گذاری رشد (‏GEM) جمع آوری شد. سپس داده های اصلی در ۱۷۷۰ بخش موثر داده پیش پردازش شدند. بر این اساس، ۱۳ شاخص از سه بعد سرمایه فکری (‏به عنوان مثال سرمایه انسانی، سرمایه ساختاری و سرمایه ارتباطی) ‏انتخاب شدند و یک سیستم شاخص ارزیابی را تشکیل دادند. پس از آن، سیستم شاخص ارزیابی با دو الگوریتم یادگیری ماشینی (‏ML)‏، یعنی روش جنگل تصادفی (‏RF)‏ و ماشین بردار پشتیبان (‏SVM) ‏تایید شد. نتایج نشان می دهد که سیستم شاخص ارزیابی ما می تواند طبقه بندی سرمایه فکری شرکت ها را بهینه کند و از نقص های ذهنی در ارزیابی کیفی جلوگیری نماید. نتایج این تحقیق شفافیت جدیدی را در تصمیم گیری و مدیریت علمی شرکت ها ایجاد می کند.


1. مقدمه


سرمایه فکری مانند حق ثبت اختراع، شرکت های دانش بنیان را قادر می سازد تا رقابتی باقی بمانند و آن ها را تشویق می کند تا نوآوری را دنبال کنند و در نتیجه ارزش آفرینی چنین شرکت هایی را ارتقا دهند [‏1]‏. علاوه بر این، سرمایه فکری پایه و اساس شرکت ها برای تدوین استراتژی های موثر در برابر شرایط اضطراری است. به عنوان مثال سرمایه رابطه ای و سرمایه ساختاری، دو بعد مهم سرمایه فکری هستند که می توانند برای کاهش ریسک های ناشی از تغییرات غیرقابل پیش بینی محیط و پاسخ به امور تجاری پیچیده و تصادفی مورد استفاده قرار گیرند. علاوه بر این، رقابت بین شرکت ها اساسا رقابت استعدادها است. یک شرکت برای باقی ماندن در رقابت باید از سرمایه انسانی، یک محرک فعال سرمایه فکری و ترکیب موثر سرمایه، مدیریت و نوآوری استفاده کند.

نمونه متن انگلیسی مقاله

Abstract


Currently, there is not yet a mature evaluation index system of intellectual capital among enterprises. The lack of such a system hinders the smooth transform of capital to enterprise value. Therefore, this paper attempts to set up an effective and objective evaluation index system for intellectual capital. First, the data on intellectual capital were collected from some enterprises from the Growth Enterprise Market (GEM). Next, the original data were preprocessed into 1770 effective pieces of data. On this basis, 13 indices were selected from three dimensions (e.g. human capital, structural capital, and relationship capital) of intellectual capital, forming an evaluation index system. After that, the evaluation index system was verified with two machine learning (ML) algorithms, namely, random forest (RF), and support vector machine (SVM). The results show that our evaluation index system can optimize the intellectual capital classification of enterprises, avoiding the subjective defects in qualitative evaluation. The research results shed important new light on the decision-making and scientific management of enterprises.


1. Introduction


Intellectual capital, such as patents, enables knowledge-based enterprises to remain competitive and encourages them to pursue innovation, thereby promoting the value creation of such enterprises [1]. Besides, intellectual capital is the basis for enterprises to formulate effective strategies against emergencies. For example, relational capital and structural capital, two important dimensions of intellectual capital, can be utilized to mitigate the risks arising from the unpredictable changes of the environment, and to respond to the complex and stochastic business affairs. Moreover, the competition between enterprises is essentially the competition of talents. To remain competitive, an enterprise must fully leverage human capital, an active driver of intellectual capital, and effectively combine capital, management, and innovation.

تصویری از فایل ترجمه

          


(جهت بزرگ نمایی روی عکس کلیک نمایید)

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- اصل مقاله انگلیسی با فرمت ورد (word) با قابلیت ویرایش
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۵۵,۸۰۰ تومان
خرید محصول
  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

یک سیستم شاخص ارزیابی برای ارزیابی سرمایه فکری بر اساس یادگیری ماشینی
مشاهده خریدهای قبلی
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها