چکیده
هدف اختلال بیش فعالی- کم توجهی(ADHD) یک اختلال توسعه یافته ی عصبی می باشد که ویژگی های آن بیش فعالی، عدم توجه و رفتارهای تند می باشد. این مقاله رویکردی را معرفی می نماید تا کودکان ADHD را از بچه های سالم با استفاده از سیگنال های EEG آنها زمان صورت گرفتن یک وظیفه ی معین تشخیص داده شوند.
مواد و روش ها: در این مقاله، 30 کودک با ADHD و 30 کودک سالم با همین سن و سال بدون الکتروآنسفالوگرافی(EEG) تحت اختلال های عصب شناسی هنگام انجام دادن فعالیتی با هم مقایسه می شوند تا رفتارها و توجه های آنها شبیه سازی شوند. ابعاد فراکتال(FD)، انتروپی تقریبی و نمای لیاپونوف از سیگنال های EEG بعنوان ویژگی های غیرخطی استخراج شدند. به منظور بهبود در نتایج طبقه بندی، روش های مربوط متقارن جفت ورودی(DISR) و حداقل مربوط حداکثر فراوانی(mRMR) برای انتخاب بهترین ویژگی ها بعنوان ورودی شبکه ی عصبی پرسپترون چند لایه ای(MLP) مورد استفاده قرار گرفتند.
نتایج همانگونه که انتظار میرفت، کودکان با ADHD در انجام وظائف مشخص و شناخته شده تاخیرات بیشتر و دقت کمتری داشتند. بنابراین، ویژگی های استخراج شده ی غیر خطی نشان داد که شاخص های غیر خطی در قسمت های مختلف مغز فرزندان ADHD در مقایسه با فرزندان سالم بزرگتر می باشد. این موضوع همچنین می تواند بیان کننده ی رفتار نامناسب بیشتری از کوکان ADHD هنگام انجام دادن یک وظیفه مشخص باشد. در نهایت اینکه، دقت 92.28 درصد و 93.65 درصد به ترتیب با استفاده از روش mRMR و روش DISR با استفاده از MLP صورت گرفت.
نتیجه گیری: نتایج این مقاله نشان دهنده ی توانمندی مشخصه های غیر خطی برای تشخیص کودکان ADHD از کودکان سالم می باشد.
مقدمه
اختلال بیش فعالی-کم توجهی(ADHD) یک اختلال روانی می باشد که مشخصه ی آن بیش فعالی، عدم توجه و رفتارهای تند است]1[. جمعیت های اخیر مبتنی بر مطالعات نشان داده است که تقریبا 5 درصد کودکان متاثر از ADHD می باشند و این اختلال در پسران بیشتر است]1،2[. در برخی موارد، بیش فعالی و رفتارهای تند در کودکان بیشتر یافت می شود در صورتی که علائم عدم توجه در دیگران بارز می باشد]1[. معمولا، علائم ADHD در سنین قبل از ورود به مدرسه آغاز می شود، اما مسائل جدی در دوران مدرسه نمایان می شود]3[. مسئله ی اصلی مربوط به کودکان مبتلا به ADHD ضعف در کنترل کردن رفتارهایشان می باشد، در نتیجه آنها اغلب به عوامل تحریک کننده ی محیطی پاسخ های مناسبی از خود نشان نمی دهند]4-6[.
Abstract
Purpose Attention-Deficit Hyperactivity Disorder (ADHD) is a neuro-developmental disorder that is characterized by hyperactivity, inattention and abrupt behaviors. This study proposes an approach for distinguishing ADHD children from normal children using their EEG signals when performing a cognitive task.
Methods In this study, 30 children with ADHD and 30 agematched healthy children without neurological disorders underwent electroencephalography (EEG) when performing a task to stimulate their attention. Fractal dimension (FD), approximate entropy and lyapunov exponent were extracted from EEG signals as non-linear features. In order to improve the classification results, double input symmetrical relevance (DISR) and minimum Redundancy Maximum Relevance (mRMR) methods were used to select the best features as inputs to multi-layer perceptron (MLP) neural network.
Results As expected, children with ADHD had more delays and were less accurate in doing the cognitive task. Also, the extracted non-linear features revealed that non-linear indices were greater in different regions of the brain of ADHD children compared to healthy children. This could indicate a more chaotic behavior of ADHD children while performing a cognitive task. Finally, the accuracy of 92.28% and 93.65% were achieved using mRMR method and DISR method using MLP, respectively.
Conclusions The results of this study demonstrate the ability of the non-linear features to distinguish ADHD children from healthy children.
INTRODUCTION
Attention-Deficit Hyperactivity Disorder (ADHD) is a mental disorder that is characterized by hyperactivity, inattention and abrupt behaviors [1]. Recent population based studies have shown that about 5% of children are affected by ADHD and this disorder is more prevalent in boys [1, 2]. In some cases, hyperactivity and abrupt behaviors are dominant while inattention symptoms are bold in the others [1]. Usually, ADHD symptoms begin at preschool ages, but serious problems appear in the school ages [3]. The main problem of children with ADHD is weakness in preservation and regulation of their behaviors, so they often do not show relevant responses to environmental stimulus [4-6].
چکیده
مقدمه
مواد و روش ها
شرکت کننده ها
آزمایش
پیش پردازش سیگنال ها
برداشت ویژگی
انتخاب مشخصه
شبکه عصبی و طبقه بندی
نتایج
بحث و نتیجه گیری
با تشکر از
عبارات تضاد منفعتی
Abstract
INTRODUCTION
METHODS
Participants
Experiment
Pre-processing of signals
Feature extraction
Feature selection
Neural network and classification
RESULTS
DISCUSSION AND CONCLUSION
ACKNOWLEDGMENT
CONFLICT OF INTEREST STATEMENTS