قابلیت ارتجاعی چند سطحی برای پردازش جریان داده ها
ترجمه شده

قابلیت ارتجاعی چند سطحی برای پردازش جریان داده ها

عنوان فارسی مقاله: قابلیت ارتجاعی چند سطحی برای پردازش جریان داده ها
عنوان انگلیسی مقاله: Multi-Level Elasticity for Data Stream Processing
مجله/کنفرانس: نتایج بدست آمده در حوزه سیستم های موازی و توزیع شده - Transactions on Parallel and Distributed Systems
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: رایانش ابری
کلمات کلیدی فارسی: پردازش جریان، قابلیت ارتجاعی چند سطحی، آپاچی استورم
کلمات کلیدی انگلیسی: stream processing - multi-level elasticity - Apache Storm
شناسه دیجیتال (DOI): https://doi.org/10.1109/TPDS.2019.2907950
دانشگاه: دانشگاه گرنوبل آلپ، گرنوبل، فرانسه
صفحات مقاله انگلیسی: 12
صفحات مقاله فارسی: 37
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.154 در سال 2019
شاخص H_index: 130 در سال 2020
شاخص SJR: 0.929 در سال 2019
ترجمه شده از: انگلیسی به فارسی
شناسه ISSN: 1045-9219
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه شده و آماده دانلود
فرمت ترجمه فارسی: pdf و ورد تایپ شده با قابلیت ویرایش
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
مقاله بیس: خیر
مدل مفهومی: ندارد
کد محصول: 7421
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
پرسشنامه: ندارد
متغیر: ندارد
درج شدن منابع داخل متن در ترجمه: خیر
ترجمه شدن توضیحات زیر تصاویر و جداول: بله
ترجمه شدن متون داخل تصاویر و جداول: بله
رفرنس در ترجمه: در انتهای مقاله درج شده است
نمونه ترجمه فارسی مقاله

چکیده

مقاله حاضر به بررسی قابلیت ارتجاعی (الاستیسیته) واکنشی در محیط های پردازش جریان می پردازد که هدف عملکردی آنها تحلیل مقادیر بزرگی از داده هایی با نهفتگی پایین و حداقل منابع است. ما با کار کردن در زمینه آپاچی استورم، یک استراتژی مدیریت ارتجاعی را پیشنهاد می کنیم که میزان توازی مؤلفه های اپلیکیشن ها را تعدیل میکند و در عین حال، سلسله مراتب محفظه های اجرایی (ماشین ها، فرآیندها و نخ های مجازی) را بطور واضح حل میکند. ما نشان می دهیم که فراهم سازی نوع اشتباهی از محفظه ممکن است منجر به افت عملکرد گردد؛ بنابراین ما راه حلی را پیشنهاد می کنیم که ارزان ترین محفظه ها (با حداقل منابع) را فراهم می سازد تا عملکرد را افزایش دهد. ما متریک های نظارت خود را توصیف می کنیم و نشان می دهیم که چطور خصوصیات یک محیط اجرایی را مد نظر قرار می دهیم. ما یک ارزیابی تجربی با اپلیکیشن های دنیای واقعی را فراهم می سازیم که کاربردپذیری رویکرد ما را تأیید می کند.

1. مقدمه

داده های بزرگ یک چالش در حوزه های مختلف سیستم محاسباتی است. داده های بزرگ در اینترنت اشیاء نیز وجود دارد و با تکثیر دستگاه های متصل، همراه با مقیاس فزاینده سیستم های کامپیوتری با عملکرد بالا رشد میکند و با فعالیت های اینترنتی و شبکه های اجتماعی رو به رشد، همراه است. این یک موضوع اصلی در کسب و کار هوش داده ای است. دو تکنیک اصلی برای پردازش داده های بزرگ وجود دارد: پردازش دسته ای و پردازش جریانی. در پردازش دسته ای، داده ها ابتدا در پایگاه داده های بزرگی ذخیره میشوند و بعداً پردازش می گردند؛ اینکار معمولاً با مدلهای برنامه نویسی مقیاس پذیری مانند Google’s MapReduce انجام میشود. با اینحال با اندازه رو به رشد داده ها، هزینه انتقال و ذخیره سازی آنها قابل جلوگیری نیست. بعلاوه در بسیاری از دامنه ها، چیزی که مهم است نگه داشتن داده های اولیه نیست بلکه تحلیل آنها در سریعترین زمان ممکن است تا اطلاعات ارزشمندی را ایجاد کنند. سیستم های پردازش جریانی برای حل این مسائل، بر واکنش پذیری و تحلیل داده ها به محض تولید شدن آنها، تأکید دارند. سالهای اخیر شاهد پیدایش راه حل های مختلفی از پردازش جریانی بوده است.

7. نتیجه گیری

تمرکز مطالعه ما بر روی تأثیر محفظه های اجرایی مختلف بر عملکرد یک سیستم پردازش جریانی ارتجاعی است. ما سلسله مراتب محفظه های اجرایی (ماشین ها، فرآیندها و نخ ها) را بصورت واضح بررسی کرده ایم و نشان داده ایم که فراهم سازی آنها با هزینه های مختلفی انجام می شود. مهمتر اینکه ما نشان داده ایم که فراهم سازی نوع اشتباهی از محفظه ها میتواند سبب افت عملکرد گردد.

نمونه متن انگلیسی مقاله

Abstract

This paper investigates reactive elasticity in stream processing environments where the performance goal is to analyze large amounts of data with low latency and minimum resources. Working in the context of Apache Storm, we propose an elastic management strategy which modulates the parallelism degree of applications' components while explicitly addressing the hierarchy of execution containers (virtual machines, processes and threads). We show that provisioning the wrong kind of container may lead to performance degradation and propose a solution that provisions the least expensive container (with minimum resources) to increase performance. We describe our monitoring metrics and show how we take into account the specifics of an execution environment. We provide an experimental evaluation with real-world applications which validates the applicability of our approach.

1 INTRODUCTION

BIg data is a challenge in various computing system domains. It is present in IoT with the proliferation of connected devices, grows with the increasing scale of high performance computing systems and is coupled with the expanding Internet and social network activities. It is a major topic in the data intelligence business. There are two major techniques to process big data: batch processing and stream processing. In batch processing, data is first stored in huge databases and is processed later, usually with scalable programming models such as Google’s MapReduce [1]. However, with the ever growing size of data, the cost of data transfer and storage becomes prohibitive [2], [3]. Moreover, in multiple domains, what is important is not to keep the initial data but to analyze it as fast as possible to produce valuable intelligence [4], [5]. To tackle these issues, stream processing systems put the emphasis on reactivity and analyze data as it is produced. Recent years have seen the emergence of multiple stream processing solutions [6], [7], [8], [9].

7 CONCLUSION

The focus of our paper is on the impact of different execution containers on the performance of an elastic stream processing system. We have explicitly considered the hierarchy of execution containers (machines, processes and threads) and have shown that their provisioning comes at a different cost. More importantly, we have shown that provisioning the wrong type of containers may decrease performance.

تصویری از فایل ترجمه

ترجمه فارسی فهرست مطالب

چکیده

1. مقدمه

2. انگیزش برای قابلیت ارتجاعی چند سطحی

2.1 مدل سیستم

2.2 معیارهای عملکرد

2.3 عملکردهای استورم

3. یک استراتژی برای قابلیت ارتجاعی چند سطحی

3.1 کنترل ارتجاعی

4. اجرا

5. ارزیابی تجربی

5.1 اپلیکیشن DDoS

5.2 قابلیت ارتجاعی واکنشی برای ارزیابی اپلیکیشن

5.3 قابلیت ارتجاعی فعال برای DDoS

5.4 اندازه گذاری منابع برای تحلیل داده آنلاین

6. مطالعات مرتبط

7. نتیجه گیری

فهرست انگلیسی مطالب

Abstract

1 INTRODUCTION

2 MOTIVATION FOR MULTI-LEVEL ELASTICITY

2.1 System Model

2.2 Performance Metrics

2.3 Performances of Storm

3 A STRATEGY FOR MULTI-LEVEL ELASTICITY

3.1 Elasticity Control

4 IMPLEMENTATION

5 EXPERIMENTAL EVALUATION

5.1 The DDoS application

5.2 Reactive elasticity for application benchmarking

5.3 Proactive elasticity for DDoS

5.4 Resource dimensioning for online data analysis

6 RELATED WORK

7 CONCLUSION

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۴۹,۲۰۰ تومان
خرید محصول