ترکیب شواهد در پردازش داده های پزشکی
ترجمه شده

ترکیب شواهد در پردازش داده های پزشکی

عنوان فارسی مقاله: ترکیب شواهد در پردازش داده های پزشکی
عنوان انگلیسی مقاله: Evidence Combination in Medical Data Mining
مجله/کنفرانس: کنفرانس بین المللی فناوری اطلاعات: کدینگ و محاسبات - International Conference on Information Technology: Coding and Computing
رشته های تحصیلی مرتبط: پزشکی
گرایش های تحصیلی مرتبط: انفورماتیک پزشکی
شناسه دیجیتال (DOI): https://doi.org/10.1109/ITCC.2004.1286697
دانشگاه: گروه علوم کامپیوتر و مهندسی، دانشگاه تگزاس، آرلینگتون
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: کنفرانس
نوع مقاله: ISI
سال انتشار مقاله: 2004
صفحات مقاله انگلیسی: 5
صفحات ترجمه فارسی: 11
فرمت مقاله انگلیسی: PDF
فرمت ترجمه فارسی: ورد و pdf
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
ترجمه شده از: انگلیسی به فارسی
وضعیت ترجمه: ترجمه شده و آماده دانلود
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا منابع داخل متن درج یا ترجمه شده است: خیر
آیا متون داخل تصاویر و جداول ترجمه شده است: خیر
کد محصول: 9273
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: درج نشده است
ترجمه فارسی فهرست مطالب

چکیده


1.مقدمه


2. پیشینه تئوری شاهد


3. محاسبه باورها با نزدیک ترین همسایه ها


4. محاسبه باورها با درخت تصمیم 


5. ارزیابی عدم اطمینان


6. ارزیابی عملی


6.1 نتایج


7. کارهای مرتبط


8. نتیجه گیری

فهرست انگلیسی مطالب

Abstract


1. Introduction


2. Background on the Theory of Evidence


3. Computing Beliefs with Nearest Neighbors


4. Computing Beliefs with a Decision Tree


5. Uncertainty Evaluation


6. Experimental Evaluation


6.1. Results


7. Related Work


8. Conclusion

نمونه ترجمه فارسی مقاله

چکیده


در این کار ما از تئوری دمپستر-شافر  از ترکیب شواهد برای پردازش داده های پزشکی استفاده کرده‌ایم. ما طبقه‌بندی را در دو حوزه در نظر گرفته‌ایم: تومورهای سینه و زخم‌های پوستی. خروجی‌های دسته‌کننده  به عنوان پایه‌ای برای محاسبه ی باور ها استفاده می‌شوند. سنجش عدم اطمینان پویا برپایه ی تفکیک کلاس است. ما عقاید سه دسته کننده را باهم ترکیب کردیم: k- نزدیک ترین همسایه  (kNN)، Naïve Bayesian و درخت تصمیم . قانون دمپستر در مورد ترکیبات، سه باور را ترکیب می‌کند تا به یک تصمیم واحد دست یابد. تجارب ما با k-fold cross validation نشان می‌دهد که طبیعت مجموعه داده ها نسبت به سایرین اثر بزرگتری روی برخی دسته‌کننده ها داشته و دسته بندی بر پایه‌ی باور ی ترکیب شده نسبت به دسته کننده‌های تکی، دقت بهتری را نشان می‌دهد. ما عملکرد ترکیب دمپستر (با وظیفه ی عدم اطمینان) را با عملکرد مدل های ترکیبی مطبوع و خطی که عملکرد محور هستند مقایسه نمودیم. ما شرایطی را مورد مطالعه قرار دادیم که تحت آن ها رویکرد ترکیب شواهد دسته بندی ارتقا می یابند.


1. مقدمه


موارد کاربردی پزشکی ِپردازش داده شامل موراد زیر می‌باشد: پیش‌بینی موثر بودن فرایندهای پزشکی، آزمایش‌های پزشکی و دارویی و کشف روابط بین داده های کلینیکی و پاتولوژیک. دیتابیس های کلینیکی حجم زیادی از اطلاعات راجع به بیماران و شرایط پزشکیشان را ذخیره می‌کنند. تکنیک های پردازش داده که روی این دیتابیس‌ها اجرا شده اند؛ روابط و طرح هایی را کشف میکنند که برای مطالعه پیشرفت و مدیرت بیماری ها مفید میباشند. ارزیابی ممکن است از پیش بینی یا تشخیص زودهنگام بیماری استفاده کند. در مورد بیماری هایی مانند سرطان پوست، سرطان سینه و سرطان ریه ، تشخیص زودهنگام آنها آنقدر مهم است که ممکن است به نجات جان بیمار بینجامد. هدف این کار، مطالعه و اجرای یک تکنیک ترکیب شاهد برای پردازش داده های پزشکی برای پیش‌بینی یا مشاهده‌ی یک بیماری است. داده های ورودی که شامل بردار های مشخصه هستند، به سه دسته‌کننده‌ی مختلف وارد می‌شوند.

نمونه متن انگلیسی مقاله

Abstract


In this work we apply Dempster-Shafer’s theory of evidence combination for mining medical data. We consider the classification task in two domains: Breast tumors and skin lesions. Classifier outputs are used as a basis for computing beliefs. Dynamic uncertainty assessment is based on class differentiation. We combine the beliefs of three classifiers: k-Nearest Neighbor (kNN), Naïve Bayesian and Decision Tree. Dempster’s rule of combination combines three beliefs to arrive at one final decision. Our experiments with k-fold cross validation show that the nature of the data set has a bigger impact on some classifiers than others and the classification based on combined belief shows better overall accuracy than any individual classifier. We compare the performance of Dempster’s combination (with differentiation-based uncertainty assignment) with those of performance-based linear and majority vote combination models. We study the circumstances under which the evidence combination approach improves classification.


1. Introduction


Medical applications of data mining include prediction of the effectiveness of surgical procedures, medical tests and medications, and discovery of relationships among clinical and pathological data [1]. Clinical databases store large amounts of information about patients and their medical conditions. Data mining techniques applied on these databases discover relationships and patterns which are helpful in studying the progression and the management of diseases [1]. Evaluation may involve prediction or early diagnosis of a disease. In case of diseases like skin cancer, breast cancer and lung cancer early diagnosis is very important as it might help save a patient’s life. The aim of this work is to study and apply a formal evidence combination technique for mining medical data for prediction of or screening for a disease. Input data, consisting of feature vectors, is input to three different classifiers.

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۲۲,۵۰۰ تومان
خرید محصول
  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

ترکیب شواهد در پردازش داده های پزشکی
مشاهده خریدهای قبلی
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها