پیش بینی ورشکستگی شخصی با استفاده از مدل درخت تصمیم گیری
ترجمه شده

پیش بینی ورشکستگی شخصی با استفاده از مدل درخت تصمیم گیری

عنوان فارسی مقاله: پیش بینی ورشکستگی شخصی با استفاده از مدل درخت تصمیم گیری
عنوان انگلیسی مقاله: Personal bankruptcy prediction using decision tree model
مجله/کنفرانس: مجله علوم اقتصادی، مالی و اداری - Journal of Economics Finance and Administrative Science
رشته های تحصیلی مرتبط: اقتصاد
گرایش های تحصیلی مرتبط: اقتصاد مالی
کلمات کلیدی فارسی: داده کاوی، اعتبارسنجی، مدل درخت تصمیم گیری، ورشکستگی شخصی، کم نمونه برداری تصـادفی
کلمات کلیدی انگلیسی: Data mining - Credit scoring - Decision tree model - Personal bankruptcy - Random undersampling
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: scopus - DOAJ
شناسه دیجیتال (DOI): https://doi.org/10.1108/JEFAS-08-2018-0076
دانشگاه: گروه مطالعات اقتصاد و مالی، دانشگاه تکنولوژی Mara، مالزی
ناشر: امرالد - Emeraldinsight
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 7.096 در سال 2018
شاخص H_index: 150 در سال 2018
شاخص SJR: 1.620 در سال 2018
شناسه ISSN: 2077-1886
شاخص Quartile (چارک): Q1 در سال 2018
صفحات مقاله انگلیسی: 15
صفحات ترجمه فارسی: 20
فرمت مقاله انگلیسی: PDF
فرمت ترجمه فارسی: ورد و pdf
مشخصات ترجمه: تایپ شده با فونت B Nazanin 14
ترجمه شده از: انگلیسی به فارسی
وضعیت ترجمه: ترجمه شده و آماده دانلود
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
آیا منابع داخل متن درج یا ترجمه شده است: بله
آیا توضیحات زیر تصاویر و جداول ترجمه شده است: بله
آیا متون داخل تصاویر و جداول ترجمه شده است: بله
کد محصول: 9673
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
رفرنس در ترجمه: در داخل متن درج شده است
ترجمه فارسی فهرست مطالب

چکیده


مقدمه


بررسی ادبیات


روش تحقیق


نتایج


نتیجه گیری

فهرست انگلیسی مطالب

Abstract


1. Introduction


2. Literature review


3. Research method


4. Results


5. Conclusion

نمونه ترجمه فارسی مقاله

چکیده


هدف - ورشکستگی شخصی در مالزی در حال افزایش است. اداره ورشکستگی [اعسار] مالزی گزارش داد که ورشکستگی شخصی از سال 2007 افزایش یافته و کل پرونده های ورشکستگی شخصی انباشته در سال 1392 معادل 131282 می باشد. این حالت در واقع وضعیتی هشدار دهنده است چرا که افزایش موارد ورشکستگی شخصی تاثیر منفی بر اقتصاد مالزی و جامعه دارد. از منظر اقتصاد شخصی، ورشکستگی شانس امنیت شغلی را به حداقل می رساند. جدا از این، حساب افراد ورشکسته مسدود شده، کنترل بر دارایی ها و اموال آن ها از بین رفته و اجازه راه اندازی هیچ کسب و کاری به آن ها داده نشده و حق مشارکت در مدیریت هیچ شرکتی را ندارند. افراد ورشکسته از درخواست وام و مسافرت خارج از کشور محروم بوده و نمی توانند به عنوان ضامن فعالیت نمایند. مقاله حاضر با توسعه مدل پیش بینی ورشکستگی شخصی با استفاده از تکنیک درخت تصمیم گیری در پی بررسی این مساله است.


طرح / روش / رویکرد – در مقاله حاضر، اصطلاح ورشکسته به افرادی اطلاق می گردد که نتوانستند وام های خود را تسویه نمایند. نمونه شامل 24546 مورد همراه با 17 درصد پرونده تسویه شده و ۸۳ درصد پرونده منقضی شده است. داده ها شامل یک متغیر وابسته، یعنی وضعیت ورشکستگی ( 1 = Y (ورشکسته)، 0 = Y (غیرورشکسته) و ۱۲ شاخص پیش بینی کننده می باشد. از نرم افزار ۱۴.۱ SAS Enterprise Miner برای توسعه مدل درخت تصمیم گیری استفاده گردید.


یافته ها - پس از تکمیل کار، مطالعه حاضر حاوی مشخصات افراد ورشکسته، مدل معتبر اعتبارسنجی ورشکستگی شخصی و متغیرهای معنی دار ورشکستگی شخصی بود.


پیامدهای کاربردی - مدل درخت تصمیم گیری مزبور در درآمدزایی و حق اختراع کارکرد دارد. موسسات مالی قادرند از این مدل برای پیش بینی تمایل وام گیرندگان بالقوه نسبت به ورشکستگی شخصی استفاد نمایند.


پیامدهای اجتماعی - ایجاد آگاهی در جامعه درباره متغیرهای مهم ورشکستگی شخصی به طوری که بتوانند از ورشکستگی اجتناب نمایند.


اصالت / ارزش - مدل درخت تصمیم گیری مزبور قادر است فرآیند ارزیابی و سنجش وام گیرندگان بالقوه را از سوی موسسات مالی تسهیل نموده و به آن کمک نماید. این مدل به شناسایی وام گیرندگان بالقوه ناتوان از پرداخت بدهی کمک کند. هم چنین مدل مزبور می تواند به موسسات مالی در پیاده سازی استراتژی های درست برای اجتناب از وام گیرندگان ناتوان از پرداخت بدهی کمک نماید.

نمونه متن انگلیسی مقاله

Abstract


Purpose – Personal bankruptcy is on the rise in Malaysia. The Insolvency Department of Malaysia reported that personal bankruptcy has increased since 2007, and the total accumulated personal bankruptcy cases stood at 131,282 in 2014. This is indeed an alarming issue because the increasing number of personal bankruptcy cases will have a negative impact on the Malaysian economy, as well as on the society. From the aspect of individual’s personal economy, bankruptcy minimizes their chances of securing a job. Apart from that, their account will be frozen, lost control on their assets and properties and not allowed to start any business nor be a part of any company’s management. Bankrupts also will be denied from any loan application, restricted from travelling overseas and cannot act as a guarantor. This paper aims to investigate this problem by developing the personal bankruptcy prediction model using the decision tree technique.


Design/methodology/approach – In this paper, bankrupt is defined as terminated members who failed to settle their loans. The sample comprised of 24,546 cases with 17 per cent settled cases and 83 per cent terminated cases. The data included a dependent variable, i.e. bankruptcy status (Y = 1(bankrupt), Y = 0 (non-bankrupt)) and 12 predictors. SAS Enterprise Miner 14.1 software was used to develop the decision tree model.


Findings – Upon completion, this study succeeds to come out with the profiles of bankrupts, reliable personal bankruptcy scoring model and significant variables of personal bankruptcy.


Practical implications – This decision tree model is possible for patent and income generation. Financial institutions are able to use this model for potential borrowers to predict their tendency toward personal bankruptcy.


Social implications – Create awareness to society on significant variables of personal bankruptcy so that they can avoid being a bankrupt.


Originality/value – This decision tree model is able to facilitate and assist financial institutions in evaluating and assessing their potential borrower. It helps to identify potential defaulting borrowers. It also can assist financial institutions in implementing the right strategies to avoid defaulting borrowers.

محتوای این محصول:
- اصل مقاله انگلیسی با فرمت pdf
- ترجمه فارسی مقاله با فرمت ورد (word) با قابلیت ویرایش، بدون آرم سایت ای ترجمه
- ترجمه فارسی مقاله با فرمت pdf، بدون آرم سایت ای ترجمه
قیمت محصول: ۲۰,۹۰۰ تومان
خرید محصول
  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

پیش بینی ورشکستگی شخصی با استفاده از مدل درخت تصمیم گیری
مشاهده خریدهای قبلی
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها