انرژی گرمایی به عنوان یک شاخص خسارت
ترجمه نشده

انرژی گرمایی به عنوان یک شاخص خسارت

عنوان فارسی مقاله: انرژی گرمایی پراکنده به عنوان یک شاخص خسارت فرسودگی برای برآورد تجربی طول عمر فرسودگی
عنوان انگلیسی مقاله: The Dissipated Heat Energy as a Fatigue Damage Index For Experimental Fatigue Life Estimations
مجله/کنفرانس: پروسیدیای مهندسی – Procedia Engineering
رشته های تحصیلی مرتبط: مهندسی مکانیک
گرایش های تحصیلی مرتبط: تاسیسات حرارتی و برودتی، ساخت و تولید
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.proeng.2018.02.032
دانشگاه: University of Padova, Department of Industrial Engineering, via Venezia, 1, 35131 Padova, Italy
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 0.970 در سال 2018
شاخص H_index: 51 در سال 2019
شاخص SJR: 0.277 در سال 2018
شناسه ISSN: 1877-7058
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12474
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1-Introduction

2-Theoretical background at constant amplitude, zero-mean stress loading

3-Analysis of geometrical effects in constant amplitude, fully reversed fatigue loading

4-Analysis of the mean stress influence in constant amplitude fatigue

5-Analysis of two stress-level loading

6-Conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

In the last decade, the heat energy dissipated in a unit volume of material per cycle (the Q parameter) has been adopted by the authors as a fatigue damage indicator of metallic materials. The advantage of using such a parameter is that it can be readily and in-situ measured at a point or a component undergoing fatigue solicitations. Geometrical, mean stress and variable amplitude (limited to two stress-level tests) effects have been successfully analysed by using the Q parameter. Concerning geometrical effects, approximately 160 experimental results generated from constant amplitude, completely reversed, stress- or strain-controlled fatigue tests on plain or notched hot rolled as well as cold drawn stainless steel specimens have been rationalised. Afterwards, the heat-energy based approach was extended to include the mean stress effect, by using a thermodynamic fatigue damage variable that combines two parameters, i.e. Q and the thermoelastic temperature achieved by the material at the maximum stress of the load cycle. Finally, Q was used to rationalise two stress-level fatigue test results, by using the Q-based fatigue curve combined with Miner’s rule. In this paper, the theoretical background and the application of the energy-based approach are reviewed in order to analyse all previously mentioned effects, focusing mainly on the mean stress and the variable amplitude, two stress-level effects.

Introduction

Fatigue of metallic materials is an irreversible process, accompanied by microstructural changes, localised plastic strains and energy dissipation, which requires a certain amount of mechanical energy in a unit volume of material, W. Only part of this energy is accumulated in the form of internal energy, Ep, which is responsible for fatigue damage accumulation and final fracture. The remaining part is dissipated as heat [1], thus translating into some temperature increase during fatigue testing. The thermal energy dissipated in a unit volume of material per cycle (the Q parameter) has been adopted as a fatigue damage indicator during fatigue tests of stainless steel specimens and a relatively simple experimental technique has also been proposed to estimate Q from in-situ measurements of the temperature at the surface of a specimen or a component [2]. Similar to W, Q is thought of as a material property, i.e. it is independent, within certain limits, of the thermal, mechanical and geometrical boundary conditions of the laboratory fatigue tests [3]. Then, the specific heat loss per cycle Q at a given point of a component (similar to the plastic hysteresis energy) depends only on the applied load cycle, defined by amplitude, mean value and stress state. The Q parameter was initially adopted to rationalise geometrical effects in fatigue of metallic [3-7] as well as composite materials [8]. Afterwards, the heat-energy based approach was extended to include the mean stress effect [9], as well as to rationalise two stress level fatigue test results of steel materials [10].