مقاومت در برابر خوردگی میله های فولادی
ترجمه نشده

مقاومت در برابر خوردگی میله های فولادی

عنوان فارسی مقاله: تأثیر تنش مکانیکی (یکنواخت و حلقوی) بر مقاومت در برابر خوردگی میله های فولادی اندود شده با کروم
عنوان انگلیسی مقاله: Effect of mechanical (monotonic and cyclic) stress on the corrosion resistance of chromium-plated steel rods
مجله/کنفرانس: پروسیدیای مهندسی – Procedia Engineering
رشته های تحصیلی مرتبط: مهندسی مکانیک، جوشکاری
گرایش های تحصیلی مرتبط: ساخت و تولید، صنایع فلزی
کلمات کلیدی فارسی: پوشش کروم، گسترش ترک ها، مقاومت در برابر خوردگی، منحنی های پلاریزاسیون
کلمات کلیدی انگلیسی: Chromium coating; Cracks propagation; Corrosion resistance; Polarization curves
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.proeng.2018.02.055
دانشگاه: ENSTA Bretagne, IRDL (FRE CNRS 3744), 2, rue François Verny, 29806 Brest Cedex 9, France
صفحات مقاله انگلیسی: 8
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 0.970 در سال 2018
شاخص H_index: 51 در سال 2019
شاخص SJR: 0.277 در سال 2018
شناسه ISSN: 1877-7058
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12510
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1-Introduction

2-Material and methods

3-Results and discussion

4-Conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings are widely used for steel cylinder rods in marine environment. Nevertheless, a uniform network of microcracks in chromium coating is evolving under mechanical loadings during the service-life of cylinder rods. The propagation of these microcracks is in the origin of the premature corrosion of the steel substrate. The aim of the study was to evaluate the relationship between mechanical stresses, the evolution of the microcracks network and the corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagated for stress levels higher than the yield stress of the substrate (520 MPa) and have passed instantly through the whole thickness of the coating and reached the steel substrate. The density of microcracks increases with the level of total strain, the inter-crack distance go from 80 µm at 1% of total strain to approximately 65 µm at 5%. Electrochemical measurements have shown that the higher the level of plastic strain applied during the mechanical loading, the more the corrosion potential of the sample decreases until reaching that of the steel substrate of approximately -0.65 V/ECS after 2 hours of immersion. The polarization curves also evidenced an increase in the corrosion current density with the strain level. Moreover, we note the absence of the characteristic passive region of the reference samples that have not undergone any loading. After cyclic loadings, no microcracks propagation was observed after 104 cycles when maximal stress was lower than the yield stress. However, a decreasing of the corrosion potential was observed for samples which were submitted to a cyclic loading. Nevertheless, the current density and the characteristic passive region were not modified.

Introduction

Since 1924 [1], chromium-electroplating process is a well-established practice in industrial needs, such as aerospace, automotive and general engineering [2]. This fact is due to a combination of properties offered to steel by a chromium coating, such as, high hardness, low coefficient of friction and corrosion resistance [3]. These properties depend highly of electroplating parameters: temperature of plating solution, plating current density, concentrations of chemical compounds in plating solution and duration of process [3-4]. Nevertheless, after many decades of practice, some aspects of this process are still not fully understood. One of them is an appearance and evolution of microcracks network during electroplating process [3-5]. The origin of microcracks initiation is related to the residual tensile stresses, when the thickness of chromium coating reaches 0.5 µm [6]. The first explanation of residual tensile stresses is due to the release of trapped atoms of hydrogen during electrolysis, with the following shrinkage of chromium coating [4]. In [3], authors highlight that these trapped atoms of hydrogen could play a role of catalyst to accelerate the chromium phase transformation. Therefore, β-Cr with HCP or FCC crystal arrangement will be transformed in more stable α-Cr (BCC) with shrinkage of 15 % vol. [5]. It has been proved that the presence of these microcracks is favorable for penetration of corrosion agents, such as chlorides [7- 9].