پوسیدگی آیروسل های رادیواکتیو در یک جریان محدود به دیوار
ترجمه نشده

پوسیدگی آیروسل های رادیواکتیو در یک جریان محدود به دیوار

عنوان فارسی مقاله: حمل و پوسیدگی آیروسل های رادیواکتیو در یک جریان آشفته محدود به دیوار
عنوان انگلیسی مقاله: The transport and decay of radioactive aerosols in a wall-bounded turbulent flow
مجله/کنفرانس: سالنامه انرژی هسته ای - Annals of Nuclear Energy
رشته های تحصیلی مرتبط: فیزیک، مهندسی هسته ای
گرایش های تحصیلی مرتبط: فیزیک کاربردی، فیزیک هسته ای، نانو فیزیک
کلمات کلیدی فارسی: آیروسل رادیواکتیو، رادیواکتیویته، ردیابی ذرات لاگرانژی، واپاشی هسته ای، رسوب ذرات، جریان آشفته محدود به دیوار
کلمات کلیدی انگلیسی: Radioactive aerosol، Radioactivity، Lagrangian particle tracking، Radioactive decay، Particle deposition، Wall-bounded turbulent flow
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.anucene.2019.05.023
دانشگاه: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 1/603 در سال 2018
شاخص H_index: 54 در سال 2019
شاخص SJR: 1/566 در سال 2018
شناسه ISSN: 0306-4549
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13052
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Methodology

3- Results and discussion

4- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

This paper aims at radiation monitoring and activity inversion when radionuclides are transported in duct or a pipe. The Lagrangian trajectory model was established, and a quick numerical method was used to simulate radioactive aerosols transport and radioactive decay in a wall-bounded flow. Total 12 cases were studied in the simulation according to the particle diameter and density. The dimensionless deposition velocity has been validated by comparing with Wood’s predictions and the experienced gravitational settling velocity. The results show that turbophoresis has a significant effect on particle transport in the wall-bounded flow, leading to particles migration and concentrating near the wall or channel center. It will cause particles to move with different velocities in the streamwise direction, so that their residence times in channel will be complexly distributed. In addition, the gravity settling will enhance the disequilibrium of particle distribution. The activity losses are obtained in detail including particle deposition ratio and radioactive decay. One radionuclide with half-life 7 s was employed in simulation, and the activity error between the estimated and initial values is up to about 40%. The activity error decreases if the half-life becomes large. When the half-life is 7.5 and 0.5 times larger than the mean time spent by airflow through the channel if the gravity is considered or not respectively, the final activity error will be less than ±5% in the present simulation setup.

Introduction

The regulatory guide 1.45 published by U.S. Nuclear Regulatory Commission mentions that it is very important to continuously monitor and quantify the reactor coolant leakage for ensuring the safe operation of the facility (Regulatory guide 1.45, 2008). One of the efficient methods to consider for incorporation in the technical specifications is to monitor airborne particulate radioactivity. Some short half-lived nuclides are considered such as 19O, 16N, 13N, 18F and 3 H. During the monitoring, airborne particles are sampled and pumped in pipe lines. According to the requirements by the International Organization for Standardization (ISO), a representative sample is necessary in monitoring the activity concentrations of radioactive substances (ISO, 2889). The losses of aerosol particles in the transport lines due to particle deposition therefore needs to be determined. The depositions during particle transport in a turbulent flow include gravitational settling and sedimentations on the walls caused by Brownian diffusion, turbophoresis, thermophoresis and other factors.