استفاده از نانوسیالات برای افزایش عملکرد رادیاتورهای خودرو
ترجمه نشده

استفاده از نانوسیالات برای افزایش عملکرد رادیاتورهای خودرو

عنوان فارسی مقاله: افزایش عملکرد رادیاتورهای خودرو با استفاده از نانوسیالات
عنوان انگلیسی مقاله: Enhancing the performance of automotive radiators using nanofluids
مجله/کنفرانس: بررسی انرژی تجدید پذیر و پایدار - Renewable & Sustainable Energy Reviews
رشته های تحصیلی مرتبط: مکانیک
گرایش های تحصیلی مرتبط: مکاترونیک، مکانیک سیالات، مکانیک خودرو، تاسیسات حرارتی و برودتی
کلمات کلیدی فارسی: نانوسیالات، رادیاتور اتومبیل، انتقال حرارت، خصوصیات ترموفیزیکی، پایداری، خوردگی
کلمات کلیدی انگلیسی: Nanofluids، Automotive radiator، Heat transfer، Thermophysical properties، Stability، Corrosion
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.rser.2019.05.052
دانشگاه: Department of Sustainable and Renewable Energy Engineering, University of Sharjah, United Arab Emirates
صفحات مقاله انگلیسی: 12
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 12/025 در سال 2018
شاخص H_index: 222 در سال 2019
شاخص SJR: 3/288 در سال 2018
شناسه ISSN: 1364-0321
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13175
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Materials and methods

3- Results and discussions

4- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Advanced heat removal technologies are critical for high-performance automotive engines. The conventional fluids being used today are based on a mixture of distilled water (DW) and ethylene glycol (EG), which widens the operational temperature range but at the same time limits the heat removal. Therefore, the use of nanofluids for improving heat transfer performance has soared over the past few years. The problem is that most of the reports highlight the short-term heat transfer results which may not be true over time. In this paper, a suggested best practice for analyzing the usage of nanofluids in heat transfer applications is presented, specifically for an actual car radiator. This work investigates the use of aluminum oxide (Al2O3) and titanium dioxide (TiO2) nanoparticles dispersed in DW and EG at 50:50 volumetric proportions. The choice of these oxide-based nanofluids is motivated by their anti-corrosive properties that are usually not analyzed or discussed in most of the articles. Furthermore, the emphasis is given on the presentation of a comprehensive characterization of the nanofluids including thermophysical properties (size, density, viscosity, thermal conductivity, corrosive behavior) and long-term stability (zeta potential) which are essential for an end-user to have. The results showed a maximum enhancement of the thermal performance by 24.21% using Al2O3 at a volume fraction of 0.3%. Friction factor and performance evaluation criterion (PEC) for the radiator experiments are calculated in order to determine the penalty in the pressure drop and to evaluate it properly. Finally, it is found that the values of PEC lie in the range of 1.03–1.31 which indicates significant flow enhancement.

Introduction

The improvement in automotive technologies has led to increased thermal loads, and therefore higher cooling rates are required [1]. The addition of fins, microchannel, and turbulators are the traditional approaches used to increase cooling rates of the radiator which are already extended to their limits [1,2]. In recent years, the automotive industry has been focused on the weight reduction of the vehicle as it improves the fuel economy and the associated running costs [3]. Weight reduction can be achieved in the engine cooling system. Furthermore, many conventional coolants (lubricants and water) have characteristically shown poor heat transfer properties due to their lower thermal conductivities (TCs) [1,4]. Engine performance, fuel efficiency, and emissions are specific parameters of an automobile which are profoundly affected by convective heat transfer [5,6]. Therefore, a new compact and innovative coolants and/or coolant systems are needed to fulfill the growing needs for heat removal in a clean and eco-friendly way [7].