نوسانات فصلی در بازارهای انرژی
ترجمه نشده

نوسانات فصلی در بازارهای انرژی

عنوان فارسی مقاله: نوسانات طولانی مدت و فصلی در بازارهای انرژی
عنوان انگلیسی مقاله: Long-term swings and seasonality in energy markets
مجله/کنفرانس: مجله اروپایی درباره تحقیقات عملیاتی – European Journal of Operational Research
رشته های تحصیلی مرتبط: مدیریت، مهندسی انرژی
گرایش های تحصیلی مرتبط: بازاریابی، سیستم های انرژی
کلمات کلیدی فارسی: دارایی، بازارهای انرژی، فصلی، نوسانات طولانی مدت، فیلتر کالمن
کلمات کلیدی انگلیسی: Finance، Energy markets، Seasonality، Long-term swings، Kalman filter
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ejor.2019.05.042
دانشگاه: Department of Economic Analysis and Finance, University of Castilla-La Mancha, Toledo 45071, Spain
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.712 در سال 2018
شاخص H_index: 226 در سال 2019
شاخص SJR: 2.205 در سال 2018
شناسه ISSN: 0377-2217
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E13536
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Model with long-term swings and seasonal fluctuations

3. Empirical analysis

4. Conclusions

Acknowledgments

Appendix A

Supplementary material

Appendix B. Supplementary materials

Research Data

References

بخشی از مقاله (انگلیسی)

Abstract

This paper introduces a two-factor continuous-time model for commodity pricing under the assumption that prices revert to a stochastic mean level, which shows smooth, periodic fluctuations over long periods of time. We represent the mean reversion price by a Fourier series with a stochastic component. We also consider a seasonal component in the price level, an essential characteristic of many commodity prices, which we represent again by a Fourier series. We obtain analytical pricing expressions for futures contracts. Using futures price data on Natural Gas, we provide evidence on the presence of long-term fluctuations and show how to estimate the long-term component simultaneously with a seasonal component using the Kalman filter. We analyse the in-sample and out-of-sample empirical performance of our pricing model with and without a seasonal component and compare it with Schwartz and Smith (2000) model. Our findings show the in-sample and out-of-sample superiority of our model with seasonal fluctuations, thereby providing a simple and powerful tool for portfolio management, risk management, and derivative pricing.

Introduction

Characterising the stochastic behaviour of commodity prices is an issue of special relevance for practitioners in financial markets, since some commodity markets are very liquid and trade high volumes every day. Markets for futures, options, and options on futures with some commodity as the underlying asset are also very active. Commodities are not standard financial assets, so it should not be surprising that they might need specific valuation models. In particular, the characteristics of many commodity products and markets imply a relatively complex pricing nature that may combine short-term seasonal behaviour with fluctuations around a long-term trend. Short-term seasonal fluctuations over an annual period generally reflect changes in demand and supply across the different seasons in a year (Gould et al., 2008; Taylor, 2010). However, changes in production technology or shifts in taste may give rise to long-term trends that cause market prices to fluctuate. Indeed, in line with our argument, Mu and Ye (2015) analysed the crude oil market and found evidence of a long-term trend combined with cyclical movements. The goal of this paper is to propose a model for commodity prices that can help characterise and estimate such components when they are present, without imposing any a priori constraint on their periodicity.