ریز ساختار و ساختار هیدراسیون اولیه آلیاژ TiFe
ترجمه نشده

ریز ساختار و ساختار هیدراسیون اولیه آلیاژ TiFe

عنوان فارسی مقاله: ریز ساختار و ساختار هیدراسیون اولیه آلیاژ TiFe با Zr و Mn به عنوان افزودنی ها
عنوان انگلیسی مقاله: Microstructure and first hydrogenation properties of TiFe alloy with Zr and Mn as additives
مجله/کنفرانس: مجله بین المللی انرژی هیدروژن – International Journal of Hydrogen Energy
رشته های تحصیلی مرتبط: شیمی، مهندسی مواد
گرایش های تحصیلی مرتبط: شیمی معدنی، شیمی آلی، مهندسی فرایند، شکل دادن فلزات
کلمات کلیدی فارسی: آلیاژ TiFe، ساختار شناسی، سینتیک فعال سازی، ذخیره هیدروژن
کلمات کلیدی انگلیسی: TiFe alloy, Morphology, Activation kinetics, Hydrogen storage
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijhydene.2019.10.239
دانشگاه: Indian Institute of Technology Bombay, Mumbai, India
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.216 در سال 2019
شاخص H_index: 187 در سال 2020
شاخص SJR: 1.100 در سال 2019
شناسه ISSN: 0360-3199
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14178
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Introduction

Result and discussion Conclusion

Acknowledgment

Appendix A. Supplementary data

References

بخشی از مقاله (انگلیسی)

Abstract

In this paper, the effect of Zr and Mn on the microstructure and first hydrogenation kinetic of TiFe alloy is reported. TiFe alloy to which Zr, Mn or a combination of both have been added were synthesized by induction melting. First hydrogenation of all alloys was performed at room temperature under 20 bar of hydrogen. We found that addition of manganese makes possible activation at room temperature, but kinetics was very sluggish. Alloy with 2 wt% Zr did not absorb hydrogen. However, with addition of 4 wt% Zr, the alloy absorbed 1.2 wt% of hydrogen. A synergetic effect was found when zirconium was added along with manganese. Alloy with 1 wt% Mn and 2 wt% Zr had better kinetics than the alloy having only Mn or only Zr. The maximum hydrogen capacity was also greater at ~1.8 wt% after 7 h. Combination of 4 wt% Zr and 2 wt% Mn absorbed 2 wt% of hydrogen in 5 h. The rate limiting step for each activated alloy was found to be diffusion controlled with decreasing interface velocity.

Introduction

Emission of greenhouse gases due to the intensive use of fossils fuel demands the development of alternative fuels [1,2]. Hydrogen fulfills the criteria as an alternative energy carrier due to its high energy density, availability and less impact on the environment when produced by renewable resources such as solar and wind energies [3,4]. One of the major challenges in the development of hydrogen economy is to store hydrogen safely and at low cost [5]. The solid-state hydrogen storage in metal hydrides presents some advantages over the conventional high-pressure cylinders and liquid hydrogen because of its high volumetric capacity, low pressure, and low temperature of operation [6-10]. Metal hydrides can also be used as a negative electrode in rechargeable batteries such as Ni-MH [11-13]. Two of the major characteristics of metal hydrides should have in order to fulfill the requirements for mobile and stationary applications are low cost and utilization in a practical range of temperature and pressure (0e100 C, 1-10 atm) [14-16].