Abstract
1- Introduction
2- Experimental
3- Results
4- Discussion
5- Conclusions
References
Abstract
The influence of the microstructure of carbon fibre reinforced polymers (CFRPs) with epoxy matrix (E-CFRP) and nylon matrix (T-CFRP) on the galvanic behaviour of DP590 steel, 6022-aluminium alloy, 1040-steel and AZ31-magnesium alloy was investigated in the GMW14872 solution. The E-CFRP/metal couples were initially more galvanic corrosion resistant, but their galvanic corrosion gradually became more severe than the T-CFRP/metal couples. The effective micro-defects in the surface polymer layer of the CFRP samples critically determined the galvanic corrosion. A detailed surface layer model was proposed, the electrochemical processes through the surface polymer layers during galvanic corrosion were discussed. A better understanding on the microstructure of CFRP determined by composites manufacture process can be obtained.
Introduction
Due to their high strength, high modulus, high corrosion resistance and especially light weight, carbon fibre reinforced polymers (CFRP) have been regarded as a promising material to replace some traditional high strength metals. For example, the use of CFRPs in car body can lead to obvious weight reduction, improved mileage, and eventually reduced carbon dioxide emission [1]. The high strength and corrosion resistance [2–4] have also made CFRPs one of the durable materials in infrastructure, such as the highways, oil and gas production facilities, chemical refineries, water and wastewater treatment systems. They have even been successfully used to strengthen the elements of concrete bridge structures [5]. However, because of the high fabrication cost, most important applications of CFRPs today are mainly limited to military and aerospace industries [6,7]. There is no doubt that CFRPs will find more applications in various industries after they become affordable. Currently, CFRPs are usually used together with metallic engineering materials, such as steels and aluminium alloys.