هماهنگی میتوکندریایی و هسته ای
ترجمه نشده

هماهنگی میتوکندریایی و هسته ای

عنوان فارسی مقاله: دو ژنوم، یک سلول: هماهنگی میتوکندریایی و هسته ای از طریق مسیرهای اپی ژنتیکی
عنوان انگلیسی مقاله: Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways
مجله/کنفرانس: متابولیسم مولکولی – Molecular Metabolism
رشته های تحصیلی مرتبط: زیست شناسی
گرایش های تحصیلی مرتبط: ژنتیک، علوم سلولی و مولکولی
کلمات کلیدی فارسی: اپی ژنتیک، متابولیت ها، آنزیم ها، ژنومیک، کروماتین، هیستون ها
کلمات کلیدی انگلیسی: Epigenetics; Metabolites; Enzymes; Genomic; Chromatin; Histones
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.molmet.2020.01.006
دانشگاه: Max-Planck-Institute for Immunobiology und Epigenetics, Department of Chromatin Regulation, Stübeweg 51, 79108, Freiburg im Breisgau, Germany
صفحات مقاله انگلیسی: 15
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 6.134 در سال 2019
شاخص H_index: 43 در سال 2020
شاخص SJR: 3.343 در سال 2019
شناسه ISSN: ۲۲۱۲-۸۷۷۸
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14660
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Histone acetylation

۳٫ Histone deacetylation

۴٫ Histone methylation

۵٫ DNA methylation

۶٫ Histone demethylation

۷٫ DNA demethylation

۸٫ Communication involving histones and their marks

۹٫ RNA modification pathways in mitochondria

۱۰٫ Conclusions

Acknowledgements

Conflicts of interest

References

بخشی از مقاله (انگلیسی)

Abstract

Background: Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. Scope of review: This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. Major conclusions: Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.

Introduction

To fit within the confined space of a eukaryotic nucleus, a cell’s genome must be efficiently compacted, but in a highly ordered manner that maintains accessibility to the genetic information. This is achieved by DNA complexing with histone proteins to form nucleosome structures, which in turn further compact to form chromatin that ultimately packages entire chromosomes. Importantly, chromatin is not an inert packaging structure but rather an instructive scaffold capable of responding to various cues to regulate access of the DNA to different cellular machineries. This accessibility is fundamentally regulated by ATP-dependent chromatin remodelling activities and by covalent modification of both DNA and histone proteins. These modifications are commonly referred to as “epigenetic” modifications. Furthermore, in addition to epigenetics, the emerging field of epitranscriptomics is now adding numerous modifications of RNA molecules to the “modification repertoire,” thereby expanding our current view of epigenetics and how it regulates all DNA processes, in particular gene expression [1]. DNA and histone modifications regulate gene expression by modulating chromatin accessibility and/or providing binding sites for regulatory proteins. To date, more than 100 post-translational modifications (PTMs) have been detected on histones, including acetylation, methylation, ubiquitylation, phosphorylation, citrullination, and O-GlcNAcylation. Of these, acetylation and methylation are by far the best-studied and most characterised histone modifications (for review, see [2,3]).