سیستم خنک کننده قفسه ای
ترجمه نشده

سیستم خنک کننده قفسه ای

عنوان فارسی مقاله: افزایش عملکرد سیستم خنک کننده قفسه ای با استفاده از مبدل حرارتی صفحه جریان متقاطع
عنوان انگلیسی مقاله: Performance enhancement of cabinet cooling system by utilizing cross-flow plate heat exchanger
مجله/کنفرانس: مدیریت و تبدیل انرژی – Energy Conversion and Management
رشته های تحصیلی مرتبط: مهندسی مکانیک
گرایش های تحصیلی مرتبط: تبدیل انرژی، تاسیسات حرارتی و برودتی
کلمات کلیدی فارسی: روش ε-NTU، سیستم خنک کننده قفسه ای، جریان متقاطع، جریان معکوس، مقاومت حرارتی
کلمات کلیدی انگلیسی: ε-NTU method، Cabinet cooling system، Cross-flow، Counter-flow، Thermal resistance
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.enconman.2020.112854
دانشگاه: Key Laboratory of Thermo-Fluid Science and Engineering, MOE, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 8.018 در سال 2019
شاخص H_index: 163 در سال 2020
شاخص SJR: 2.730 در سال 2019
شناسه ISSN: 0196-8904
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14975
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Nomenclature

۱٫ Introduction

۲٫ Methods

۳٫ Results and discussion

۴٫ Conclusions

Credit authorship contribution statement

Declaration of Competing Interest

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Gas-gas plate heat exchanger is an important component to remove heat generated from electronic devices in the cabinet cooling system. The counter-flow plate heat exchanger is usually used due to its higher heat transfer performance than the cross-flow plate heat exchanger. However, in the cabinet cooling system, the overall dimensions for the heat exchanger is limited. Therefore, it is necessary to consider the overall dimensions of the system during heat exchanger design, but the traditional thermal design method of heat exchanger doesn’t consider the effect of system parameters. In this paper, a cross-flow plate heat exchanger is proposed to improve the cooling performance of cabinet cooling system, and is compared with the counter-flow plate heat exchanger. The ε-NTU method and effectiveness-thermal resistance method are applied to evaluate the performance. It is found that for large width of cabinet cooling system, the system with cross-flow plate heat exchanger has higher cooling performance and lower thermal resistance than the system with counter-flow plate heat exchanger. When the width is 700 mm, the cooling capacity of the two systems are 176.13 W/K and 138.95 W/K, respectively. The dimensionless thermal resistance can characterize the irreversibility of the heat transfer at constant mass flow rate.

Introduction

Plate heat exchangers are widely used in energy consuming and handling industries [1]. Generally, plate heat exchangers are used for liquid–liquid heat exchange [2]. Imran et al. [3] optimized liquid–liquid plate heat exchanger. The overall dimensions of the heat exchanger were independently considered in their research. Miao et al. [4] numerically studied liquid–liquid plate heat exchangers. The heat exchanger was counter-flow plate heat exchanger. Two methods were utilized to get simulation results, respectively. The results of grey-box method were better. Kumar et al. [5] experimentally studied the liquid–liquid plate heat exchangers and obtained correlation based on their experimental data, in which the overall dimensions of the measured heat exchangers were constant. Yang et al. [6] obtained correlation based on their experimental data and empirical correlations in open literature. The overall dimensions of heat exchangers in their work were varied. Counter-flow plate heat exchanger also could be applied for two-phase heat exchange [7] and the heat exchangers in organic Rankine cycle could be counter-flow plate heat exchangers for better performance [8]. However, due to the primary heat transfer surfaces and light weight the plate heat exchanger was developed for gas–gas heat exchange [9] and even for liquid–gas heat exchange [10]. Cross-flow arrangement was convenient for liquid–gas plate heat exchanger [11]. High temperature gas–gas heat exchangers were mainly applied for the microturbine recuperated cycle system [12] and air preheater of the fossil fuel power system [13]. Recuperators for micro gas turbine was reviewed by Xiao et al. [14] recently. Wang et al. [15] improved the performance of air preheater by optimizing geometrical parameters of primary surface.