خلاصه
1. معرفی
2. فرمول بندی ریاضی
3. شرایط مرزی و رویکرد ریاضی
4. نتایج و بحث
5. نتیجه گیری
بیانیه نویسنده
اعلامیه منافع رقابتی
سپاسگزاریها
نامگذاری
در دسترس بودن داده ها
منابع
Abstract
1. Introduction
2. Mathematical formulation
3. Boundary conditions and mathematical approach
4. Results and discussion
5. Conclusion
Author statement
Declaration of competing interest
Acknowledgements
Nomenclature
Data availability
References
چکیده
شناخته شده است که دما بر کارایی، امنیت و عمر چرخه سلول های باتری لیتیوم یون (LiB) تأثیر زیادی دارد. سلول های LiB با استفاده از انواع نانوسیال ها نسبت به تغییرات دما حساس هستند. این مطالعه از یک سیستم خنککننده جدید با Re بین 15×103 و 30×103 برای کاهش دمای سلولها استفاده میکند. Al2O3، CuO، SiO2 و ZnO با غلظت نانوذرات 5 درصد و قطر نانوذرات 20 نانومتر پراکنده در یک مایع پایه (آب) برای ایجاد اثرات استفاده میشوند. یافته ها نشان می دهد که با افزایش Re، عدد ناسلت نیز افزایش می یابد. یک سیستم خنک کننده نوآورانه طراحی شده و به صورت عددی آزمایش شده است تا نشان دهد چگونه انواع مختلف نانوسیال ها بر افزایش انتقال گرما و توزیع دما در سلول های LiB تأثیر می گذارند. دمای سلول های LiB با جریان دادن آب بین 52 باتری داخل بسته خنک کننده کاهش می یابد. برای هر مقدار فاصله، اعداد رینولدز افزایش مییابد که منجر به افزایش میانگین اعداد ناسلت میشود. با توجه به نتایج دینامیک سیالات محاسباتی، عدد ناسلت با افزایش فاصله افزایش می یابد. نتایج نشان میدهد که برای نانوسیالات SiO2، نانوسیالات Al2O3، نانوسیالات ZnO، نانوسیالات CuO و آب خالص، به ترتیب Re 18000، 22000، 25000، 27500 و > 30000 برای بدست آوردن دمای بسته باتری (0◦ ◦ درجه سانتی گراد) مورد نیاز است. شرایط عملیاتی معمولی). مقادیر بالاتر Re انتقال حرارت را کمی با هزینه پمپاژ بهبود می بخشد. بنابراین، Re 18000 با نانوسیال SiO2 ترجیح داده می شود. استفاده از نانوسیالات همچنین نشان میدهد که SiO2 بهترین خنککننده حرارتی را برای بستههای باتری در میان همه نانوسیالات مورد بررسی نشان میدهد. نانوسیال Al2O3 نیز یک گزینه عالی است و به دنبال آن نانوسیال ZnO قرار دارد. به عنوان مثال، کاهش دمای داغترین سلول باتری برای نانوسیالات SiO2، نانوسیالات Al2O3، نانوسیالات ZnO، نانوسیالات CuO و آب خالص به ترتیب به بیش از 47، 44، 43، 42 و 42 ◦C می رسد.
Abstract
Temperature is known to greatly affect the efficiency, security, and cycle life of lithium-ion battery (LiB) cells. LiB cells are delicate to changes in temperature by using a variety of nanofluids. This study uses a novel cooling system with a Re between 15 × 103 and 30 × 103 to lower the cells' temperature. Al2O3, CuO, SiO2, and ZnO with nanoparticles concentrations of 5% and nanoparticle diameters of 20 nm dispersed in a base liquid (water) are used to produce the effects. The findings demonstrate that as the Re rises, so does the Nusselt number. An innovative cooling system is designed and numerically tested to show how different kinds of nanofluids affect the increment in heat transmission and distribution of temperature in LiB cells. The temperature of LiB cells drops by flowing the water between the 52 batteries inside the cooling pack. For each spacing value, the Reynolds numbers are increased, which results in an increase in the average Nusselt numbers. According to the computational fluids dynamics results, the Nusselt number rises with increasing spacing. The results show that Re of 18000, 22000, 25000, 27500, and >30000 are needed for SiO2 nanofluids, Al2O3 nanofluids, ZnO nanofluids, CuO nanofluids, and pure water, respectively, to get battery pack temperature of <40 °C (the typical operating conditions). Higher Re values improve the heat transfer slightly with the expense of pumping power; therefore, Re of 18000 with SiO2 nanofluids is preferred. The utilization of nanofluids also shows that SiO2 exhibits the best thermal cooling for battery packs among all investigated nanofluids. Al2O3 nanofluid is also an excellent option, followed by ZnO nanofluid. For example, the temperature reduction of the hottest battery cell reaches >47, 44, 43, 42, and 42 °C for SiO2 nanofluids, Al2O3 nanofluids, ZnO nanofluids, CuO nanofluids, and pure water, respectively.
Introduction
The Greater demands for battery thermal management systems (BTMS) have been made as lithium-ion batteries are increasingly used in solar systems, power electric cars, and any engineering applications People are most concerned with the temperature at which batteries operate, their reliability, their safety, and their cycle life. The fluid cooling system can manage the peak battery temperature and the temperature differential among batteries within a tolerable range, therefore increasing the cycle battery's lifespan [[1], [2], [3]]. However, the operating temperature has a significant effect on the efficiency and life of lithium-ion batteries. Too high or too low an operating temperature can damage the battery's cycle life, efficiency, dependability, and safety, as well as cause substantial degradation of its charge and discharge performance [4,5]; Sheng, Su, Zhang, Li et al., 2019; Z [6]. When a lithium-ion battery's working temperature is raised from 25 to 50° Celsius, the capacity loss increases by 100% after 300 cycles. Lithium-ion (Li-ion) batteries, as a vital element of electric automobiles (EVs), have drawn considerable interest in recent years [7]. Due to their high energy and power density, long cycle life, and low self-discharge, Li-ion batteries are considered the best energy storage technology for electric vehicles in comparison to other types of rechargeable batteries.
Conclusion
This paper investigates an effective cooling process for a battery pack having 52 batteries in a staggered arrangement (5 rows and 21 columns) using four nanofluids (i.e., SiO2, Al2O3, ZnO, CuO) and pure water. The flow and energy equation is modeled using ANSYS Fluent, which is validated against reported experimental data. The nanofluids are taken at the same concentration (5 vol%) and particle size (20 nm). Based on the applied conditions, the following remarks are concluded:
- Higher Re values result in a better cooling process and reduce battery cells’ temperature. To get a typical battery pack temperature of <40 °C, Re = 18000, 22000, 25000, and 27500 for SiO2, Al2O3, ZnO, and CuO nanofluids, respectively, should be used compared to Re > 30000 for pure water.
- The hottest battery cell temperature could be dropped by 47, 44, 43, 42, and 42 °C for SiO2, Al2O3, ZnO, CuO, and pure water, respectively.
- SiO2 is preferred since it cools all battery temperatures by < 40 °C with lower Re (i.e., 18000).