چکیده
مقدمه
فرمول ریاضی معادلات مارپیچ
برنامه نویسی پارامتریک CNC
طراحی الگوریتم درون یابی
فرمول بندی الگوریتم G-code
پیاده سازی
نتایج آزمون
نتیجه گیری
اختصارات
مراجع
Abstract
Introduction
Mathematical formulation of helix equations
CNC parametric programming
Design of the interpolation algorithm
Formulation of the G-code algorithm
Implementation
Test results
Conclusions
Abbreviations
References
چکیده
این مقاله طراحی، اجرا و اعتبار سنجی تجربی یک چرخه کنسرو جدید را برای ماشینهای فرز CNC ارائه میکند که برش دقیق و کارآمد رزوهها را با گام و شعاع متغییر یا متغییر ممکن میسازد. چرخههای کنسرو معمولی به رزوههای فرز ثابت محدود میشوند و تطبیقپذیری ماشینهای فرز CNC را در کاربردهای ماشینکاری با نخ محدود میکنند. فرآیند توسعه شامل ادغام یک الگوریتم کنترل پیچیده در نرم افزار دستگاه فرز CNC است که به اپراتور کنترل قابل توجهی بر فرآیند برش نخ می دهد. این الگوریتم به اپراتور اجازه میدهد بین رشتههای خارجی یا داخلی انتخاب کند، شعاع اولیه و انتهایی را تنظیم کند، گامهای اولیه و نهایی را تعیین کند، تعداد چرخشها را مشخص کند و نوع نخ چپ یا راست را انتخاب کند. چنین انعطاف پذیری امکان ایجاد رشته هایی با هندسه های متنوع را فراهم می کند. علاوه بر این، چرخه کنسرو پیشنهادی، با تنظیم حرکت پله در امتداد منحنی مارپیچ تجویز شده، قابلیت جابهجایی بین پاسهای خشن و تکمیل را فراهم میکند.
آزمایشهای شبیهسازی انجامشده در موارد مختلف نخسازی به وضوح کارایی چرخه کنسرو پیشنهادی را نشان میدهد. این نتایج توانایی آن را برای رسیدگی به طیف گسترده ای از سناریوهای ماشینکاری، ارائه راه حل های عملی قابل اجرا در طیف وسیعی از برنامه ها نشان می دهد.
Abstract
This paper presents the design, implementation, and experimental validation of a novel canned cycle for CNC milling machines, enabling the precise and efficient cutting of threads with fixed or variable pitch and radius. Conventional canned cycles are limited to fixed pitch threads, restricting the versatility of CNC milling machines in thread machining applications.
The development process involves integrating a sophisticated control algorithm into the CNC milling machine's software, giving the operator remarkable control over the thread cutting process. This algorithm allows the operator to choose between external or internal threads, set both initial and final radii, determine initial and final pitches, specify the number of turns, and select the left or right-hand thread type. Such flexibility enables the creation of threads with diverse geometries. Furthermore, the proposed canned cycle provides the capability to switch between roughing and finishing passes by adjusting the step motion along the prescribed helical curve.
Simulation tests conducted under various threading cases clearly demonstrate the efficiency of the proposed canned cycle. These results showcase its capability to address a wide range of machining scenarios, offering practical solutions applicable across a spectrum of applications.
Introduction
The evolution of Computer Numerical Control (CNC) machining has brought about a revolution in manufacturing processes, not only enhancing precision and efficiency but also addressing the challenges posed by complex geometries and demanding machining applications. This paper deals with the domain of CNC thread milling, introducing an innovative approach through the development and implementation of a comprehensive canned cycle.
A canned cycle is a predefined machining operation that entails a sequence of machine movements to perform various machining tasks like drilling, pocketing, slotting, boring, and tapping. It aims to simplify programming by consolidating multiple commands into a single block, utilizing G-code to define machining operations that would typically necessitate multiple blocks [1, 2]. Continuous efforts are made by CNC manufacturers to incorporate new canned cycles into their controllers, specifically designed to handle intricate and complex geometries [3, 4]. This is easily concluded by comparing the canned cycles available nowadays with the older ones.
Centered on programming and facilitating the precise and efficient cutting of threads within a user-friendly environment, incorporating both fixed and variable pitch and radius, the presented canned cycle addresses limitations posed by conventional canned cycles, which primarily target fixed pitch threads. In the precise domains of engineering and manufacturing, the use of variable pitch threads is necessitated by diverse potential applications. These applications encompass manufacturing components for automotive vehicle engines, fasteners for aerospace systems, industrial devices, robots manufacturing parts [5,6,7,8] and the creation of medical implants [9,10,11,12]. The mentioned references constitute a sample of recent related research work.
Conclusions
The work presented in this paper built upon the foundations laid in previous mentioned research. As predicted in that earlier work, the present study advanced and extended the capabilities of the thread canned cycle to encompass threads with predefined start and ending radii, start and ending pitches, and the desired number of turns, applicable to both left- or right-hand, internal or external threads. Moreover, the proposed canned cycle seamlessly transitions between roughing and finishing passes, allowing precise regulation of step motion along the prescribed helical curve. The introduced canned cycle surpasses the limitations of conventional cycles, which are confined to fixed pitch threads, by providing a comprehensive solution for diverse threading requirements.
Simulation tests confirm the adaptability of the proposed canned cycle across diverse threading conditions. The graphical outputs, combined with the mathematical formulation of helix equations and CNC milling machine simulations across various threading cases, collectively verify the efficiency, and validation of the proposed canned cycle.