مقاله انگلیسی به سوی درک سطح سیستم از زیست شناسی میتوکندریایی
ترجمه نشده

مقاله انگلیسی به سوی درک سطح سیستم از زیست شناسی میتوکندریایی

عنوان فارسی مقاله: به سوی درک سطح سیستم از زیست شناسی میتوکندریایی
عنوان انگلیسی مقاله: Towards a systems-level understanding of mitochondrial biology
مجله/کنفرانس: کلسیم سلولی - Cell Calcium
رشته های تحصیلی مرتبط: زیست شناسی
گرایش های تحصیلی مرتبط: میکروبیولوژی، علوم سلولی و مولکولی
کلمات کلیدی فارسی: سیستم میتوکندری ، انجمن های عملکردی ، تجزیه و تحلیل تلفیقی ، رویکردهای چند مکانیکی
کلمات کلیدی انگلیسی: Mitochondrial system, Functional associations, Integrative analyses, Multiomics approaches
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: JCR - Master Journal List - Scopus - MedLine
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ceca.2021.102364
دانشگاه: Munich Cluster for Systems Neurology, Munich, Germany
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: 4.874 در سال 2020
شاخص H_index: 111 در سال 2021
شاخص SJR: 2.132 در سال 2020
شناسه ISSN: 0143-4160
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 48
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E15341
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
نوع رفرنس دهی: vancouver
فهرست انگلیسی مطالب

Highlights


Abstract


Graphical abstract


Abbreviations


Keywords


1. Introduction


2. De novo identification of mitochondrial proteins


2.1. In silico strategies


2.2. Experimental strategies


2.3. Integrative biology strategies


3. From proteins to functions: deorphanizing the unknown


3.1. In silico strategies


3.2. Experimental strategies


4. Perspectives


CRediT authorship contribution statement


Declaration of Competing Interest


Acknowledgments


References

نمونه متن انگلیسی مقاله

Abstract


Human mitochondria are complex and highly dynamic biological systems, comprised of over a thousand parts and evolved to fully integrate into the specialized intracellular signaling networks and metabolic requirements of each cell and organ. Over the last two decades, several complementary, top-down computational and experimental approaches have been developed to identify, characterize and modulate the human mitochondrial system, demonstrating the power of integrating classical reductionist and discovery-driven analyses in order to de-orphanize hitherto unknown molecular components of mitochondrial machineries and pathways. To this goal, systematic, multiomics-based surveys of proteome composition, protein networks, and phenotype-to-pathway associations at the tissue, cell and organellar level have been largely exploited to predict the full complement of mitochondrial proteins and their functional interactions, therefore catalyzing data-driven hypotheses. Collectively, these multidisciplinary and integrative research approaches hold the potential to propel our understanding of mitochondrial biology and provide a systems-level framework to unraveling mitochondria-mediated and disease-spanning pathomechanisms.


1. Introduction


Mitochondria are essential organelles for cellular and organismal life in virtually all eukaryotes (Fig. 1). Present-day human mitochondria originated from the integration of an endosymbiotic α-proteobacterium into a host cell, therefore exchanging their independence for a semi-autonomous life [1,2]. By the late 1990s, comparative genomics analyses of α-proteobacteria genomes and quantitative two-dimensional gels of highly purified mitochondria suggested that the mammalian mitochondrial proteome consists of ∼1,000–1,500 distinct proteins [3,4]. The majority of those proteins derive from the eukaryotic genome, whereas the prokaryotic genome was significantly reduced during the transition from endosymbiotic bacterium to organelle [2] (Fig. 2A). To date, only a handful of protein-coding genes – thirteen in mammals – are still retained in the mitochondrial DNA (mt-DNA) of almost all eukaryotes. Therefore, most of the mitochondrial proteome is encoded from the nuclear genome, translated in the cytosol, and then targeted and imported into the organelle.

Strikingly, only 1% of mammalian mitochondrial proteins are allocated to ATP synthesis, highlighting that the organelle’s functions reach far beyond energy production (Fig. 1). Indeed, mitochondria are at the core of multiple cellular pathways, including the biosynthesis of precursors for cholesterol, estrogen, testosterone and hemoglobin; the regulation of redox and ion homeostasis; the activation of antiviral responses and cell death. Adding an additional layer of complexity, mitochondrial functions are tied to the specialized tasks and physiology of different cell types, tissues, and organisms [5]. For instance, only between 40–70 % of the human mitochondrial proteome is conserved in commonly used model systems such as unicellular eukaryotes (e.g. S. cerevisiae) and invertebrates (e.g. C. elegans, D. melanogaster) (Fig. 2B). Furthermore, over 15 % of the mitochondrial system shows tissue-specificity [6] and profound differences even among cell types of the same tissue [6,7].

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

مقاله انگلیسی به سوی درک سطح سیستم از زیست شناسی میتوکندریایی
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها