مقاله انگلیسی مهندسی نانوذرات فریت با پاسخ مغناطیسی افزایش یافته
ترجمه نشده

مقاله انگلیسی مهندسی نانوذرات فریت با پاسخ مغناطیسی افزایش یافته

عنوان فارسی مقاله: مهندسی نانوذرات فریت با پاسخ مغناطیسی افزایش یافته برای کاربردهای مهندسی پزشکی پیشرفته
عنوان انگلیسی مقاله: Engineering ferrite nanoparticles with enhanced magnetic responsefor advanced biomedical applications
مجله/کنفرانس: Materials Today Advances - پیشرفت های امروزی مواد
رشته های تحصیلی مرتبط: مهندسی پزشکی، بیوتکنولوژی
گرایش های تحصیلی مرتبط: بیومواد، بیوتکنولوژی مولکولی
کلمات کلیدی فارسی: نانوذرات مغناطیسی فریت، تقویت سیگنال MR، پاسخ مغناطیسی-گرمایی، پاسخ مغناطیسی-مکانیکی، مواد مهندسی پزشکی
کلمات کلیدی انگلیسی: Magnetic ferrite nanoparticles, MR signal amplification, Magnetothermal response, Magnetomechanical response, Biomedical materials
نوع نگارش مقاله: مقاله مروری (Review Article)
نمایه: Scopus - Master Journals List - DOAJ
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.mtadv.2020.100119
دانشگاه: chool of Medicine, Northwest University, Xi'an, China
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: 5.850 در سال 2020
شاخص H_index: 7 در سال 2021
شاخص SJR: 1.547 در سال 2020
شناسه ISSN: 2590-0498
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 16
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E15442
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
نوع رفرنس دهی: vancouver
فهرست انگلیسی مطالب

Abstract


Keywords


1. Introduction


2. MFNPs-based magnetoresponsive effects for biomedical applications


3. Conclusion and perspectives


Declaration of competing interest


Acknowledgments


References

نمونه متن انگلیسی مقاله

Abstract


One of the most attractive features of magnetic ferrite nanoparticles (MFNPs) in biomedical application is that they can mediate external magnetic field to produce local magnetic field, magnetic thermal and magnetic force effects. These generated effects can later be utilized in the diagnosis and treatment of various diseases. The application performance is mainly determined by the nano-magnetism of MFNPs. Therefore, by modulating the magnetic properties, the improved magnetic resonance (MR) signals, magnetothermal, and magnetomechanical effects of the MFNPs can be achieved. In this review, we summarize the strategies used in the engineering of MFNPs to enhance MR imaging sensitivity and magnetic thermal conversion efficiencies. We will also discuss the detailed magnetoresponsive mechanism arising from the critical magnetic properties of MFNPs. Furthermore, we will highlight the recent progresses of the engineered MFNPs in biomedical applications, with emphasis in MR signal amplification, magnetothermal, and magnetomechanical response in biomedical applications.


 


1. Introduction


Since ancient Greek time, lodestone, i.e., bulk magnetite (Fe3O4), has been used in the treatment of common ailments. With the advancement in nano-biotechnology, the applications of such magnetic ferrite nanoparticles (MFNPs) have evolved, which extends to the modern biomedicine and clinical study [[1], [2], [3], [4], [5], [6], [7]]. As biological tissues are transparent to magnetic fields, the most attractive advantage of MFNPs in biomedical applications is that they can complete various functions triggered by invisible, tissue-penetrating magnetic field [8,9]. For instance, natural magnetotactic bacteria build iron oxide nanoparticles (IONPs) in a chain configuration to generate a permanent dipole in their cells so as to navigate toward their favorable habitats by sensing the Earth's magnetic field [10]. These MFNPs possess good biocompatibility, which have already been used as imaging and therapeutic agents in preclinical and clinical settings [2,3,11]. As a result of the excellent magnetoresponsive properties of MFNPs, numerous exciting in vivo biomedical applications are created. These include imaging for non-invasive diagnosis of diseases [12], treatment of diseases with hyperthermia [13], magnetically driven nanorobots [14], magnetic activation of ion channel for cell signaling [15], manipulation of cell's function and fate [16,17], and so on. Despite the good establishment of these concepts, there is a significant challenge in obtaining effective MFNPs that can achieve full functionality via the efficient conversion of the external energy of magnetic field. As such, due to their poor conversion ability, this greatly hinders their transition from bench to bed.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

مقاله انگلیسی مهندسی نانوذرات فریت با پاسخ مغناطیسی افزایش یافته
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها