Abstract
Keywords
References
Abstract
The number of electric vehicle batteries is expected to increase. Their integration into circular economy requires their recollection at end-of-life. Decision makers need tools to determine suitable locations of recollection centers, as the decision is not trivial. Lithium batteries are hazardous materials, which require a minimization of transport duration. Here, we develop a mathematical model for locating a number of battery recollection centers. We discuss the results on the case of Germany for the time period from 2020 to 2050. The aim is to identify the influence factors on the location choice and therefore enable a founded decision.
1. Introduction
In 2019, the size of the global electric vehicle fleet was 7.2 million. Ninety-two percent of vehicles were used in the People’s Republic of China, Europe, and the United States [1]. According to the International Energy Agency (IEA), in 2030 global electric vehicle sales will reach 25 million, while the stock will be 140 million units [1]. The electric vehicle market is in growth phase.
Batteries are crucial parts of electric vehicles and have become a hot topic in research and development [2]. Within the last decade the capacity density increased by 300% [3]. Global Battery Alliance predicts that total weight of endof-life (EOL) Lithium-Ion-Batteries (LIBs) will increase more than threefold between 2018 and 2025 [4]. We must prevent formation of battery landfills. Therefore, EOL vehicle batteries must become a part of a circular economy value chain.
Circularity demands for repurposing batteries to secondlife applications through remanufacturing and recycling. As an initial step, recollection is required. Locations for recollection must be determined appropriately.
The goal of this paper is to determine the locations of recollection centers by means of minimization of the transport duration.
The paper is organized as follows. In Section 2, we give an overview of the research about repurposing of vehicle batteries and the facility location related to EOL vehicle batteries. In Section 3, we define the problem for determination of recollection center locations, and, in Section 4, we present the mathematical model. In Section 5, we solve and discuss instances of the model based on information from Germany. In Section 6, we conclude and present further research activities.