مقاله انگلیسی فرصت‌ها و محدودیت‌های فنوتیپ‌سازی گیاهی با محیط کنترل‌شده
ترجمه نشده

مقاله انگلیسی فرصت‌ها و محدودیت‌های فنوتیپ‌سازی گیاهی با محیط کنترل‌شده

عنوان فارسی مقاله: فرصت‌ها و محدودیت‌های فنوتیپ‌سازی گیاهی با محیط کنترل‌شده برای صفات واکنش آب و هوا
عنوان انگلیسی مقاله: Opportunities and limits of controlled-environment plant phenotyping for climate response traits
مجله/کنفرانس: ژنتیک نظری و کاربردی - Theoretical and Applied Genetics
رشته های تحصیلی مرتبط: زیست شناسی
گرایش های تحصیلی مرتبط: ژنتیک گیاهی، بوم شناسی،زیست شناسی گیاهی
نوع نگارش مقاله: مقاله مروری (Review Article)
شناسه دیجیتال (DOI): https://doi.org/10.1007/s00122-021-03892-1
دانشگاه: Department of Plant Breeding, Justus Liebig University Giessen,Germany
صفحات مقاله انگلیسی: 16
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 5.451 در سال 2020
شاخص H_index: 179 در سال 2021
شاخص SJR: 1.922 در سال 2020
شناسه ISSN: 0040-5752
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: E15984
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Introduction

To control or not to control?—That is the question

State-of-the-art phenotyping

Automated digital trait assessment

Transferability of collected data to agricultural practice is critical

Data management is key to knowledge discovery and innovation in breeding

Summary

References

Acknowledgements

Funding

Author information

Ethics declarations

Additional information

Rights and permissions

About this article

Advertisement

بخشی از مقاله (انگلیسی)

Abstract

Rising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.

 

Introduction

The increase in atmospheric CO2 leads to rising temperatures and changing precipitation patterns (IPCC 2014), which have a strong impact on agricultural production. While the anticipated effects of climate change may be beneficial for the growing conditions in some regions (e.g. boreal region), climate change may cause extended or more intense periods of stress and different combinations of stress conditions in other regions (Lobell et al. 2011; Asseng et al. 2015; Leng and Hall 2019; Ray et al. 2019). The anticipated climate change affects crops in their environment in multiple ways. On the one hand, elevated atmospheric CO2 concentration stimulates photosynthesis and may benefit shoot growth and yield production as well as abiotic stress adaptation by enhanced root growth, decreased stomatal conductance, and, thus, improved water use efficiency (WUE) (Lopes and Foyer 2011). On the other hand, it is most likely that these positive effects caused by an increased CO2 concentration will be negated by increasing temperature and changes in precipitation patterns (Lobell and Gourdji 2012). Global warming shifts the timing of seasons and thus the phenology of plants: leaf development and flowering begins earlier in the year (Piao et al. 2019; Menzel et al. 2020). The extension of the frost-free period can be advantageous in certain regions, but may also lead to heat stress and summer droughts in other regions (Trnka et al. 2011; Teixeira et al. 2013), by shifting the vegetation period, which increases evaporation through plant growth in spring (Lian et al. 2020).