مقاله انگلیسی قدرت پمپاژ و وابستگی منطقه حرارتی به مقاومت حرارتی در میکروکانال های بزرگ مقیاس
ترجمه نشده

مقاله انگلیسی قدرت پمپاژ و وابستگی منطقه حرارتی به مقاومت حرارتی در میکروکانال های بزرگ مقیاس

عنوان فارسی مقاله: قدرت پمپاژ و وابستگی منطقه حرارتی به مقاومت حرارتی در میکروکانال های بزرگ مقیاس گرماگیر تحت روانساز با شدت حرارت بالا
عنوان انگلیسی مقاله: Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux
مجله/کنفرانس: مجله انتقال حرارت و جرم - Heat and Mass Transfer
رشته های تحصیلی مرتبط: مهندسی مکانیک
گرایش های تحصیلی مرتبط: تاسیسات حرارتی و برودتی، مکانیک سیالات
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Master Journals List
شناسه دیجیتال (DOI): https://doi.org/10.1007/s00231-021-03104-y
دانشگاه: University of Chinese Academy of Sciences, Beijing, PR China
صفحات مقاله انگلیسی: 14
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 2.284 در سال 2020
شاخص H_index: 68 در سال 2021
شاخص SJR: 0.551 در سال 2020
شناسه ISSN: 1432-1181
شاخص Quartile (چارک): Q2 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: E16035
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Abbreviations

References

Acknowledgements

Author information

Additional information

Rights and permissions

About this article

References

بخشی از مقاله (انگلیسی)

Abstract

In this paper, based on the Li-Peterson pumping consumption-thermal resistance optimization model, a single-phase structure-optimized large-scale microchannel heat sink with each channel having 0.2 mm width and 0.8 mm height for extremely high heat flux cooling was proposed and investigated. Employing deionized water as coolant, two different heat source areas were designed and the results were compared under different pumping power from 0.1 W to 6.5 W. The experimental and simulation results indicates that the proposed copper-based microchannel thermal management system can dissipate heat flux of 1000 W/cm2 over 1cm2 and 500 W/cm2 over 5cm2, respectively, adding critical data support to the database of single-phase microchannel heat sink with heat removal capacity exceeding 1000 W/cm2. Moreover, the possible minimum thermal resistance over a broad pumping power range of 0.1 W to 6.5 W was explored. Extremely low thermal resistance of 0.065 K/W and 0.019 K/W were obtained for these two heating area scenarios. Overall, the proposed copper-based optimized microchannel heat sink is an ideal solution to cool high heat flux devices.

 

Introduction

The heat fuxes of devices such as high-performance computer chips, lasers and nuclear reactor are rapidly increasing, and the problem of heat accumulation and overheating is getting deteriorate [1]. In recent decades, the heat fux of the chip has reached 500 W/cm2 in the feld of Micro-ElectroMechanical Systems (MEMS), and the local hot spot can exceed 1000 W/cm2 [2–5]. For instance, the thermal fux of the next generation of IGBT modules will gradually increase from 100 W/cm2 to 500 W/cm2 [6]. For high-power laser devices, each diode laser needs to dissipate 500 W/cm2 of heat fux while keeping the operating temperature as low as possible [7]. In the nuclear power engineering, the heat fux generated by components included in fusion reactors and defense applications can be up to 104 W/cm2 [8].

Generally, the operating temperature of electronic devices should be less than 85 °C, and the reliability of products will be decreased by 50% if over-heated temperature exceeding 10 °C [9–11]. Since the demand of miniaturized design also limits the heat dissipation space, the uneven internal temperature distribution and poor heat dissipation have a series of negative efects, which will ultimately afect the performance and reliability of electronic devices. Therefore, reasonable thermal management is critical to electronic products [12, 13].

Current cooling technologies mainly include air cooling, liquid cooling, heat pipe, micro structure and spray cooling. As proposed by previous works, the traditional cooling method has relatively limited heat dissipation capacity, while the microchannel liquid cooling can handle a heat dissipation load of more than 1000 W/cm2 [14–16], which is expected to meet the urgently demand for high heat fux cooling in the near future.