اتصال لحظه ای برای مقاومت به فروپاشی پیشرونده در قاب های ساختمانی بتنی
ترجمه نشده

اتصال لحظه ای برای مقاومت به فروپاشی پیشرونده در قاب های ساختمانی بتنی

عنوان فارسی مقاله: اتصال لحظه ای غیر رقابتی برای مقاومت به فروپاشی پیشرونده در قاب های ساختمانی بتن پیش ساخته
عنوان انگلیسی مقاله: A non-emulative moment connection for progressive collapse resistance in precast concrete building frames
مجله/کنفرانس: سازه های مهندسی - Engineering Structures
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه، مدیریت ساخت
کلمات کلیدی فارسی: فروپاشی پیشرونده، بتن پیش ساخته، اتصال لحظه ای، آزمایش تجربی
کلمات کلیدی انگلیسی: Progressive collapse، Precast concrete، Moment connection، Experimental testing
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2018.10.027
دانشگاه: Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA
صفحات مقاله انگلیسی: 15
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3/167 در سال 2017
شاخص H_index: 104 در سال 2019
شاخص SJR: 1/69 در سال 2017
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E11015
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Prototype building and modified moment connection design

3- Experimental setup

4- Experimental results

5- System-level progressive collapse assessment

6- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

This paper documents the experimental development of a new spandrel-to-column moment connection detail for progressive collapse resistance in precast concrete building frames. This study focuses on a 10-story prototype precast concrete frame building with perimeter special moment frames (SMF) that are subjected to a ground-floor column removal. The experimental subassembly represents a spandrel-to-column connection on the perimeter SMF near the middle of the building face (i.e. not at the corners). The connection is non-emulative and utilizes unbonded high-strength steel post-tensioning (PT) bars which pass through ducts in the column and are anchored to the spandrels via bearing plates. The proposed design strives for construction simplicity, avoids field welding and/or grouting, and maximizes ductility by allowing the high strength steel bars to act as structural “fuses” when yielding. A full-scale quasi-static pushdown test is performed on two variants of the proposed connection: one with higher moment-rotation capacity and limited ductility, and another with lower capacity and higher ductility. The results show that the connection can reliably achieve its design yield capacity, performs well under service level demands, and can achieve moderate-to-high ductility. The experimental results are then applied to a system-level computational model of the prototype building frame under a column removal scenario. The results of a nonlinear dynamic analysis demonstrate that the system can arrest progressive collapse in the event of a single column loss scenario when either variant of the proposed connection is considered.

Introduction

Progressive collapse of a structural system occurs when localized failure of a primary load-bearing element leads to a larger, more widespread collapse of adjoining portions of the structure. This type of collapse, which can affect multiple floors and/or multiple bays up to the entire structure, is regarded as a disproportionate response to the initial local damage. To prevent a chain reaction of structural failure in elements surrounding the local damage, a structural system must be able to redistribute its loads to bridge over the damaged areas without suffering a catastrophic collapse. In current design guidelines, the initial local failure for framed structures is typically identified as the significant loss of load-carrying capacity by a single primary vertical loadbearing element (i.e. a column). The sudden loss of a column in a framed structure has two primary effects: (1) increased span length for horizontal elements (i.e. beams) that were previously supported by the column, and (2) inertial amplification of the associated gravity forces as the structure tries to reestablish equilibrium. Both effects result in increased demands on the undamaged portions of the structure. Because of the increased demands, two primary progressive collapse mechanisms may occur: (1) flexural or shear failure of the horizontal elements (beams or girders) located above the damaged column, or (2) overload of the vertical elements (columns) located adjacent to the damaged column due to load redistribution. Other mechanisms involving the secondary structural elements (e.g. the failure and/or detachment of the floor system) may also occur but are not considered in this study.