خواص مکانیکی خاکستر بادی و بتن ژئوپلیمر حاوی انواع مختلفی از مواد تغییر فاز دهنده
ترجمه نشده

خواص مکانیکی خاکستر بادی و بتن ژئوپلیمر حاوی انواع مختلفی از مواد تغییر فاز دهنده

عنوان فارسی مقاله: خواص فیزیکی و مکانیکی خاکستر بادی و بتن ژئوپلیمر سرباره حاوی انواع مختلفی از مواد تغییر فاز دهنده ریزپوشینه دار
عنوان انگلیسی مقاله: Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials
مجله/کنفرانس: ساخت و ساز و مصالح ساختمانی - Construction and Building Materials
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه، مدیریت ساخت، عمران محیط زیست
کلمات کلیدی فارسی: بتن ژئوپلیمر، طرح مخلوط، مواد تغییر فاز دهنده ریزپوشینه دار، استحکام فشاری، ریز ساختار
کلمات کلیدی انگلیسی: Geopolymer concrete، Mix design، Micro-encapsulated phase change materials، Compressive strength، Microstructure
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.conbuildmat.2018.04.016
دانشگاه: Faculty of Engineering, Østfold University College, P.O. Box 700, 1757 Halden, Norway
صفحات مقاله انگلیسی: 12
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 4/686 در سال 2018
شاخص H_index: 129 در سال 2019
شاخص SJR: 1/522 در سال 2018
شناسه ISSN: 0950-0618
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
کد محصول: E11414
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Background

3- Experimental

4- Mix design procedure

5- Results and discussion

6- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

A mix design procedure for geopolymer concrete (GPC) was developed in order to maintain a high compressive strength after adding micro-encapsulated phase change materials (MPCM). The most relevant factors which affect the properties of fly ash/slag based GPC containing MPCM are considered. Class F fly ash and slag, sodium hydroxide and sodium silicates were chosen as binder and alkaline solution, respectively. Two types of MPCM were used for a better understanding the effect of different MPCMs on the properties of the GPC. The setting time of geopolymer pastes was found to depend on both the amount of water adsorbed by the microcapsules, the viscosities of the samples, and possibly the latent heat. Accordingly, the initial setting time increased and the final setting time decreased with MPCM concentration. A slump test and compressive strength measurements have been utilized to examine the workability and mechanical properties of the new mix design. It was observed that the addition of MPCM reduces the slump and the compressive strength of GPC. These effects were more pronounced for the MPCM that form agglomerated structures and has a surface containing some polar groups, than for the more spherically shaped and less agglomerated MPCM with a hydrophobic surface. Although the addition of MPCM reduced the compressive strength of geopolymer concrete, the mechanical performance was higher than that of Portland cement concrete after 28 days of curing. A combination of SEM imaging and X-ray-tomography suggested that MPCM agglomeration, gaps between MPCM and the concrete matrix, an increased amount of entrapped air, and microcapsules that break under stress might contribute to the reduced compressive strength of GPC.

Introduction

The demand for cementitious materials has increased considerably in recent years. Ordinary Portland cement is normally considered as the main material for construction purposes. However, the Portland cement production has a severe impact on the environment due to the huge amount of greenhouse gases emitted to the atmosphere [1,2]. In the early 80 s geopolymers were introduced as alternative construction materials with a lower environmental impact [3]. The geopolymer binder is synthesized by mixing materials rich in silica and amorphous alumina with a strong alkaline activator [4]. Geopolymers are a very interesting concrete alternative, with an improved performance compared to traditional concretes [5], while utilizing a high proportion of industrial by-products such as fly ash (FA), coal ash and blast furnace slag. The incorporation of micro-encapsulated phase change materials (MPCM) in building materials, such as mortar and concrete can improve the thermal energy storage capacity of building structures, thereby decreasing the energy demand in buildings [6]. However, the presence of MPCM decreases the workability and mechanical strength of concrete [7]. In spite of reducing the concrete compressive strength by addition of MPCM, it is still often high enough to be used in building constructions.