دانلود مقاله یک الگوریتم PSO-SVM جدید نیمه متصل موازی مشارکتی
ترجمه نشده

دانلود مقاله یک الگوریتم PSO-SVM جدید نیمه متصل موازی مشارکتی

عنوان فارسی مقاله: یک الگوریتم PSO-SVM جدید نیمه متصل موازی مشارکتی : مطالعه ای مبتنی بر شناسایی وقفه تنفسی در خواب ( آپنه)
عنوان انگلیسی مقاله: A novel partially connected cooperative parallel PSO-SVM algorithm: Study based on sleep apnea detection
مجله/کنفرانس: IEEE Congress on Evolutionary Computation
رشته های تحصیلی مرتبط:  مهندسی کامپیوتر - پزشکی
گرایش های تحصیلی مرتبط:  الگوریتم و محاسبات - معماری سیستم های کامپیوتری - مغز و اعصاب
کلمات کلیدی فارسی:  آپنه در زمان خواب، PSO، برنامه نویسی موازی، SVM
کلمات کلیدی انگلیسی: Sleep apnea, PSO, parallel programming, SVM
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/CEC.2012.6256138
دانشگاه: Faculty of Engineering and IT University of Technology, Sydney Sydney, Australia
صفحات مقاله انگلیسی: 8
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2012
ایمپکت فاکتور: 10.180 در سال 2017
شاخص H_index: 145 در سال 2019
شاخص SJR: 3.493 در سال 2017
شناسه ISSN: 1089-778X
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E11891
فهرست مطالب (انگلیسی)

 

Abstract

I.Introduction

II.Preliminary Techniques Information

III.Approach and Method

IV.Results and Discussion

V.Conclusion

بخشی از مقاله (انگلیسی)

Abstract

Sleep disorders are common in a general population. It effect one in 5 adults and has several short term and long term bad side effects on health. Sleep apnea (SA) is the most important and common component of sleep disorders. This paper presents an automatic approach for detecting apnea events by using few bio-singles that are related to breathe defect. This work uses only air flow, thoracic and abdominal respiratory movement as input. The proposed algorithm consists of three main parts which are signal segmentation, feature generation and classification. A new proposed segmentation method intelligently segments the input signals for further classification, then features are generated for each segment by wavelet packet coefficients and also original signals. In classification phase a unique parallel PSO-SVM algorithm is investigated. PSO used to tune SVM parameters, and also data reduction. Proposed parallel structure used to help PSO to search space more efficiently, also avoiding fast convergence and local optimal results that are common problem in similar parallel algorithms. Obtained results demonstrate that the proposed method is effective and robust in sleep apnea detection and statistical tests on the results shown superiority of it versus previous methods even with more input signals, and also versus single PSO-SVM. Using fewer signals means more comfortable to subject and also, reduction of cost during recording the data.

INTRODUCTION

Sleep disorders are important because they are common in a general population; a survey in 1987 [1] reported that at least one symptom of disturbed sleep was present in 41% of all subjects; and still sleep disorder is common now [2], for instance, Young reported that one daytime sleepiness in 5 adults in 2004 [3].

The sleep disorders have several short term and long term bad side effects[4]. Short-term effects lead to impaired attention and concentration, lowered life quality, increased rates of absenteeism with less productivity, and greater possibility of accidents at work, home or on the road. Longterm consequences of sleep deprivation include increased morbidity and mortality from more automobile accidents, coronary artery disease, heart failure, high blood pressure, obesity, type 2 diabetes mellitus, stroke and memory impairment as well as depression. Long-term consequences, however, are still open [5] for further academic research..