دانلود مقاله عملکرد تکیه‌گاه‌های پل دارای خاک تقویت شده ژئوسنتتیکی با بلوک مدولار
ترجمه نشده

دانلود مقاله عملکرد تکیه‌گاه‌های پل دارای خاک تقویت شده ژئوسنتتیکی با بلوک مدولار

عنوان فارسی مقاله: عملکرد تکیه‌گاه‌های پل دارای خاک تقویت شده ژئوسنتتیکی با بلوک مدولار تحت سناریوهای آتش سوزی
عنوان انگلیسی مقاله: Performance of geosynthetic reinforced soil bridge abutments with modular block facing under fire scenarios
مجله/کنفرانس: Computers and Geotechnics
رشته های تحصیلی مرتبط:  مهندسی عمران
گرایش های تحصیلی مرتبط:  سازه - خاک و پی
کلمات کلیدی فارسی: مقاومت در برابر آتش، ژئوسنتتیک، خاک تقویت شده، آستانه های پل، عناصر محدود، شبیه سازی
کلمات کلیدی انگلیسی: Fire resistance, Geosynthetics, Reinforced soil, Bridge abutments, Finite elements, Simulation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.compgeo.2016.12.004
دانشگاه: Faculty of Civil Engineering, University of Tehran, 4563-11155 Tehran, Iran
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2017
ایمپکت فاکتور: 3.360 در سال 2017
شاخص H_index: 72 در سال 2019
شاخص SJR: 1.979 در سال 2017
شناسه ISSN: 0266-352X
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E11922
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Experimental program

3. Finite element analysis

4. Parametric analysis

5. Main results and discussion

6. Conclusions

Acknowledgment

References

بخشی از مقاله (انگلیسی)

Abstract

This paper investigates the effect of fire on the performance of geosynthetic reinforced soil bridge abutments using experimental tests and finite element analyses. Experimental programs were comprised of a series of tensile strength tests at elevated temperatures and fire resistance tests, which were performed on a physical model. Findings revealed the adverse effect of fire on geosynthetic reinforced soil bridge abutments when fire duration exceeded 60 min. Results show that the depth within the backfill affected by the fire is approximately 50 cm.

Introduction

In recent years, the use of the geosynthetic reinforced soil (GRS) technology for bridge abutments has been recommended because it has advantages over conventional methods. The GRS bridge abutment system includes a segmental geosynthetic reinforced soil wall with a bridge seat (sill) placed on the top of it. The stability of these structures depends on the mechanical properties of the reinforcing elements as well as their interactions with the soil. Fig. 1 shows a typical GRS bridge abutment system with modular concrete block facing Geosynthetic reinforcements such as geotextiles and geogrids are made from synthetic polymers and mechanical properties of the polymers change with increased temperatures. Nonlinear increases in creep, a significant reduction in tensile strength, increased failure strain, increased degradation, a reduction in the modulus of elasticity, and a reduction in surface hardness are some of the consequences of increased temperatures on the properties of these types of material [1–8]. Few attempts have been made to study the effect of temperature distribution on reinforced soil structures (due to ambient temperature variations). Segrestin and Jailloux [9] investigated the effect of temperature variation on the geosynthetic aging and discovered that in a reinforced soil structure, the temperature within the backfill varies to a depth of 10 m. A seven-year observation of a reinforced earth structure on the M25 motorway at Waltham Cross, UK, carried out by Murray and Farrar [10]. Their observation showed that 0.3 m behind the facing, soil temperature was relatively close to ambient temperature and after a distance of almost 4 m from the nearest external boundary, the soil temperature was constant. Kasozi et al. [8] studied numerically the temperature distribution in a mechanically stabilized earth wall structure in Las Vegas, NV using field data from the Tanque-Verde MSE wall in Tucson, AZ. Based on their study, the overall average temperature within the backfill was much higher than the highlighted test in ASTM D6637 [11].