بهبود جستجو در زمان واقعی
ترجمه نشده

بهبود جستجو در زمان واقعی

عنوان فارسی مقاله: بهبود جستجو در زمان واقعی در حافظه سازمانی
عنوان انگلیسی مقاله: Improving the Real-Time Searching in the Organizational Memory
مجله/کنفرانس: علوم کامپیوتر پروسیدیا – Procedia Computer Science
رشته های تحصیلی مرتبط: مدیریت، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مدیریت فناوری اطلاعات، هوش مصنوعی، الگوریتم ها و محاسبات
کلمات کلیدی فارسی: جستجو در زمان واقعی، حافظه سازمانی، پروژه های اندازه گیری، ضریب ساختاری
کلمات کلیدی انگلیسی: Real-Time Searching; Organizational Memory; Measurement Projects; Structural Coefficient
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.procs.2019.06.043
دانشگاه: Economic and Law School, National University of La Pampa, Santa Rosa, CP6300, Argentina
صفحات مقاله انگلیسی: 12
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 1.257 در سال 2018
شاخص H_index: 47 در سال 2019
شاخص SJR: 0.281 در سال 2018
شناسه ISSN: 1877-0509
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12309
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1-Main text

2-Related Works

3-The Project Definition and its Impact in the Processing Architecture

4-The New Structural Coefficient based on the Definitions of the Attributes

5-Implementation of the Text Similarity-Driven Structural Coefficient

6-Conclusions

Acknowledgement

References

بخشی از مقاله (انگلیسی)

Abstract

The real-time data processing constitutes a critical area when talking about real-time decision making. Strong decisions are based on recommendations for describing the associated course of actions, but the real-time processing gives a very short time for searching them. The Processing Architecture based on Measurement Metadata is a data stream engine oriented to measurement projects, which supports the decision making through an organizational memory. The search space related to the organizational memory is initially in-memory limited using the structure of the measurement projects. Given a project, the related projects are ordered based on a given scoring from its structural definition. Here, a new structural coefficient based on the text similarity, which is computed from the textual definition of each descriptive attribute of a project is introduced. This allows better scoring of the related projects, even when its definitions could be affected by human errors or multiple definitions. The scoring is critical when in a given situation, a project has not specific experience for recommending, in such context, the recommendations from the near projects are served. The pabmm_sh library is outlined and a simulation on its associated processing times for the similarity computing are introduced based on the token definition for a measurement project. The library adds a new alternative perspective in the processing architecture for driving the searches into the organizational memory. It can update 2000 projects less than 1 second, keeping the individual processing time of each project under 1 millisecond.

Main text

The data processing is cheaper every day thanks to the technology evolution jointly with the scale economy, even the big data repositories and the data streams are fed allowing the data-driven decision making as a natural aspect in the different organizations (e.g. the governments) [1]. The measurement and evaluation constitute a logic step for determining the current state of a concept under monitoring and its posterior evaluation. One of the applications of the data-driven decision making is the monitoring of entities, which is especially useful for keeping track of an entity (e.g. a person), jointly with the characterization of its behavior [2].