رابط فیبر کربن و اپوکسی
ترجمه نشده

رابط فیبر کربن و اپوکسی

عنوان فارسی مقاله: تأثیر محیط مرطوب و گرم بر رفتار کششی و جداسازی رابط فیبر کربن و اپوکسی
عنوان انگلیسی مقاله: Effect of hygrothermal environment on traction-separation behavior of carbon fiber/epoxy interface
مجله/کنفرانس: مصالح ساختمانی و ساخت و ساز – Construction and Building Materials
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه
کلمات کلیدی فارسی: رابط، کشش و جداسازی، محیط مرطوب و گرم، شبیه سازی دینامیکی مولکولی
کلمات کلیدی انگلیسی: Interface، Traction-separation، Hygrothermal environment، Molecular dynamics simulation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.conbuildmat.2019.06.087
دانشگاه: School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.686 در سال 2018
شاخص H_index: 129 در سال 2019
شاخص SJR: 1.522 در سال 2018
شناسه ISSN: 0950-0618
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12370
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Computational method

۳٫ Results and discussion

۴٫ Conclusions

Declaration of Competing Interest

Acknowledgements

Appendix A. Details of molecular interface model

Appendix B. Dependence of pulling rate on interfacial mechanics

Appendix C. Development of cohesive laws for fiber/matrix interface

References

بخشی از مقاله (انگلیسی)

Abstract

The strong interfacial interaction between carbon fiber and epoxy matrix plays a key role in ensuring the performance of carbon fiber reinforced polymer (CFRP). During a prolonged service-life, CFRP is inevitably exposed to the hygrothermal environment and the integrity of fiber/matrix interface is most vulnerable, but the microscopic behavior of the interface under the environmental exposure remains elusive. Here an atomistic analysis is presented on mode I and mode II traction-separation behavior between carbon fiber and epoxy matrix, which provides insights into how the surrounding water molecules at different temperature levels impact the interfacial behavior. It is found that the water molecules at the interface reduce the contact area between fiber and matrix and weaken the epoxy properties by disrupting the molecular interactions, which consequently lowers the energy barriers to interfacial separation and sliding, and the elevated temperature level further degrades the interfacial mechanical response as the epoxy becomes softened. The research findings demonstrate that the presence of water drastically deteriorates the integrity of carbon fiber/epoxy interface, and the derivation of cohesive laws based on tractionseparation simulation results provides a paradigm of deriving the fundamental inputs for a multiscale modeling of the interface at the continuum level by considering the environmental effect.

Introduction

Carbon fiber reinforced polymer (CFRP) is a type of remarkably resilient composite material possessing outstanding properties, such as high specific stiffness- and strength-to-weight ratios, good thermal stability, and strong corrosion resistance. CFRP composite has emerged as a viable alternative to the conventional materials in construction industry, such as applications in concrete infrastructures as external confinement/reinforcement and internal rebar [1–3]. Despite the promise as reinforcement of existing infrastructures and structural building-block in new constructions, CFRP composite exhibits a certain degree of property degradation under the environmental exposure, which shortens the intended service-life [4–9]. These problems are usually attributed to the deterioration of interfacial integrity between carbon fiber and epoxy matrix, which is crucial to the performance of these macroscale applications involving CFRP composite [9,10].