ژئوپلیمر مبتنی بر پس مانده سنگ آهن
ترجمه نشده

ژئوپلیمر مبتنی بر پس مانده سنگ آهن

عنوان فارسی مقاله: ژئوپلیمر مبتنی بر پس مانده سنگ آهن حاوی باقی مانده پشم شیشه: یک مطالعه از خواص مکانیکی و ریزساختاری
عنوان انگلیسی مقاله: Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties
مجله/کنفرانس: مصالح ساختمانی و ساخت و ساز – Construction and Building Materials
رشته های تحصیلی مرتبط: مهندسی پلیمر، مهندسی عمران
گرایش های تحصیلی مرتبط: پلیمریزاسیون، سازه
کلمات کلیدی فارسی: پس مانده سنگ آهن، باقی مانده پشم شیشه، ژئوپلیمر، زئولیت، ریزساختار، Rietveld
کلمات کلیدی انگلیسی: Iron ore tailing، Glass wool residue، Geopolymer، Zeolite، Microstructure، Rietveld
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.conbuildmat.2019.05.181
دانشگاه: Departamento de Engenharia, Universidade Federal de Lavras (UFLA), Campus Universitário Lavras, 37200-000 Lavras, Minas Gerais, Brazil
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.686 در سال 2018
شاخص H_index: 129 در سال 2019
شاخص SJR: 1.522 در سال 2018
شناسه ISSN: 0950-0618
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12397
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1-Introduction

2-Experimental procedure

3-Results and discussion

4-Conclusion

Declaration of Competing Interest

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

This work presents an evaluation of the application of iron ore tailing as primary precursor material to geopolymer production. Glass wool residue from the iron ore industry was also included as a blend material. Four mixtures of geopolymers were produced: one mixture using only iron ore tailing; three mixtures where the iron ore tailing was replaced by the glass wool residue, with a substitution ratio of 10%, 20% and 30% (in mass). Furthermore, three different grinding times and three NaOH solution concentration were applied. Compressive strength and flexural strength tests were performed in prismatic specimens at 7-days, and the microstructural analysis of the fragments was obtained by SEM analysis. QXRD analysis based on the Rietveld’s refinement method and TG/DTA analysis was applied for all specimens. The results showed the synthesis of a zeolite phase in all specimens, and the SEM micrographs showed a transformation process of the glass wool residue. Finally, high mechanical performances were found to the iron ore tailing-based geopolymer, reaching values higher than 100 MPa for compressive strength and 20 MPa for flexural strength. The obtained values are related to the grain packing improvements, geopolymerization products, and the glass wool residue working as a supplementary precursor material to the geopolymerization reaction. The result points to the potential of iron ore tailing and glass wool residue to geopolymers studies and application.

Introduction

Geopolymers are inorganic materials produced by alkaline activation of aluminosilicate materials through the geopolymerization reaction. In a highly concentrated alkali hydroxide or silicate solution, the aluminosilicates form a very stable material with amorphous or semi-crystalline polymeric structures with interconnected Si-O-Al-O-Si bonds called geopolymer [1–۳]. Typical examples of precursor materials to the geopolymer synthesis are metakaolin, fly ash and slag. Currently, Portland cement is the most used binder and one of the main responsible for the low environmental performance of conventional concrete. Cement production accounts for 5–۷% of total global CO2 emissions [4–۷]. Furthermore, concrete structures under specific environmental conditions exhibit some durability problems. This important aspect related to serviceability life of the structure is the capability to resist the mechanical actions, physical actions, and chemical aggressions that it is subjected to over their expected service life [8].