مکانیسم آسیب ساختاری تیرهای بتنی
ترجمه نشده

مکانیسم آسیب ساختاری تیرهای بتنی

عنوان فارسی مقاله: شناسایی مکانیسم آسیب ساختاری تیرهای بتنی تقویت شده با میله های پلیمری تقویت شده با الیاف بازالت (BFRP) با استفاده از مبدل های هوشمند بر اساس روش معکوس زمانی
عنوان انگلیسی مقاله: Identification of the structural damage mechanism of BFRP bars reinforced concrete beams using smart transducers based on time reversal method
مجله/کنفرانس: مصالح ساختمانی و ساخت و ساز – Construction and Building Materials
رشته های تحصیلی مرتبط: مهندسی عمران، مهندسی پلیمر، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: سازه، پلیمریزاسیون، هوش مصنوعی
کلمات کلیدی فارسی: میله های پلیمری تقویت شده با الیاف بازالت (BFRP)، مبدل های سنگدانه هوشمند، روش معکوس زمانی، مکانیسم آسیب ساختاری
کلمات کلیدی انگلیسی: Basalt fiber reinforced polymer (BFRP) bars، Smart aggregate (SA) transducers، Time reversal method، Structural damage mechanism
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.conbuildmat.2019.06.056
دانشگاه: School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523080 China
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.686 در سال 2018
شاخص H_index: 129 در سال 2019
شاخص SJR: 1.522 در سال 2018
شناسه ISSN: 0950-0618
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12410
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Graphical abstract

1. Introduction

2. Principle of monitoring flexural behavior of beams using SA transducer based on time reversal method

3. Experimental setup and procedure

4. Experimental results discussion

5. Discussion

6. Conclusions

Author contributions

Declaration of Competing Interest

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Fiber reinforced polymer (FRP) bars, as alternatives of steel bars, are encouraged to be utilized in concrete construction due to the properties of both corrosion resistance and high tensile strength. In this paper, smart aggregate (SA) transducers, which can be used as both actuator and sensor, are employed to identify the structural damage mechanism of basalt-FRP (BFRP) bars reinforced concrete beams. Time reversal method is adopted for increasing the signal-to-noise ratio (SNR), which is aimed at obtaining clear amplitude of focused signal. Those methodologies are applied to conduct a further study of the structural mechanism of BFRP reinforced concrete flexural components. The experimental results reveal that the cracking and failure position of the concrete beam reinforced with BFRP bars can be located and the corresponding loads can be identified according to signal change when different crack appears. The stiffness degradation of BFRP bars reinforced concrete beams can be effectively expressed and the deflection can be accurately predicted by acquiring amplitude of focused signals in the overall zone. Additionally, it has been recognized that the damage process and mechanism of BFRP reinforced concrete beams can be accurately evaluated using those SA transducers and the status of those structural components also can be monitored effectively.

Introduction

It is well-founded that the corrosion of steel reinforcement and fatigue damage lead to degradation of concrete structural performance [1–4]. Therefore, the reduced durability and shortened service life are exposed in this structural component [5]. For existing damaged structures, the repair using fiber reinforced polymer (FRP) materials in the form of fabrics and laminates can retrofit these corrosion-damaged and fatigue-damaged concrete structural [6–11]. In the new-built structures, a new-type of reinforcement, FRP bar, as a substitute for steel bar is encouraged to use in concrete structures owing to its advantages of excellent mechanical properties and corrosion resistance properties [12–۱۶]. Some concrete bridge structures have been constructed with FRP bars, such as the Thompson’s Bridge, Mackinleyville Bridge and Talyor Bridge [17]. Zheng et al. [15,18] revealed that basalt-FRP (BFRP) reinforced self-compacting concrete (SCC) deck slabs exhibited good structural behaviors within the service load. Ehab El-Salakawy et al. [19] conducted a field investigation on the bridge deck slab reinforced with glass-FRP (GFRP) bars constructed in Canada, and results revealed that GFRP rebar provided very competitive performance in comparison to steel under actual service conditions.