استحکام در برابر فرسودگی موضعی
ترجمه نشده

استحکام در برابر فرسودگی موضعی

عنوان فارسی مقاله: ارزیابی استحکام در برابر فرسودگی موضعی اجزای سخت شده القایی بر اساس شبیه سازی فرآیند تولید عددی
عنوان انگلیسی مقاله: Local fatigue strength assessment of induction hardened components based on numerical manufacturing process simulation
مجله/کنفرانس: پروسیدیای مهندسی – Procedia Engineering
رشته های تحصیلی مرتبط: مهندسی مکانیک
گرایش های تحصیلی مرتبط: ساخت و تولید
کلمات کلیدی فارسی: استحکام در برابر فرسودگی، سخت شدن القایی، شبیه سازی عددی، ارزیابی فرسودگی موضعی، رویکرد کششی
کلمات کلیدی انگلیسی: Fatigue strength; Induction hardening; Numerical simulation; Local fatigue assessment; Strain approach
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.proeng.2018.02.060
دانشگاه: Montanuniversität Leoben, Chair of Mechanical Engineering, 8700 Leoben, Austria
صفحات مقاله انگلیسی: 7
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 0.970 در سال 2018
شاخص H_index: 51 در سال 2019
شاخص SJR: 0.277 در سال 2018
شناسه ISSN: 1877-7058
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12553
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1-Introduction

2-Numerical simulation of manufacturing process

3-Local fatigue strength assessment

4-Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Induction hardening as common heat treatment process for highly-stressed automotive components significantly affects the surface layer properties leading to a compressive residual stress condition and a local hardening of the material. The beneficial effect of the post-treatment is generally well investigated and already implemented in industrial applicable guidelines by considering nominal fatigue strength enhancement factors. However, as the fatigue strength improvement essentially depends on the applied manufacturing process parameters, the resulting local material properties and the local load stress distribution, an elaborated numerical fatigue assessment procedure based on a manufacturing process simulation of a notched round specimen is presented in this paper. Thereby, a two-dimensional axi-symmetric model is set-up, whereby the inductive heating process is performed in COMSOL® and the subsequent quenching process in SYSWELD®. The resulting axial residual stress condition at the notch area of the specimen reveals a sound accordance to X-ray measurements. Finally, a local fatigue strength assessment based on the local strain approach is shown. Herein, manufacturing dependent residual stress states are considered as mean stresses on the basis of the damage parameter by Smith, Watson, and Topper. The estimated fatigue data points agree well to results of four-point bending fatigue tests, which basically prove the applicability of the presented fatigue design methodology.

Introduction

In general, induction hardening acts as common post-treatment process in industrial applications, such as gears [1], crankshafts [2], or railway axles [3]. Due to the surface-hardened layer, the wear resistance [4] as well as the fatigue performance [5] are usually increased. In case of the latter effect, benefit factors for the fatigue strength enhancement due to induction hardening are provided in fatigue design guidelines [6]. However, the resulting fatigue resistance of induction hardened components significantly depends on the applied process parameters and the resulting local material properties. In order to ensure a proper fatigue design, this paper demonstrates a method to estimate the local fatigue life on the basis of a numerical manufacturing process simulation [7]. The numerical simulation chain and the subsequent local fatigue assessment is applied on a representative specimen designed as notched round bar, see Fig. 1. The base material is a 50CrMo4 steel, which is common for induction hardened parts.