تبدیل حرارتی شیمیایی روغن اسیدی زباله
ترجمه نشده

تبدیل حرارتی شیمیایی روغن اسیدی زباله

عنوان فارسی مقاله: تبدیل حرارتی شیمیایی روغن اسیدی زباله به محصولات هیدروکربنی از طریق کاتالیزورهای کامپوزیت پایه
عنوان انگلیسی مقاله: Thermochemical conversion of waste acidic oil into hydrocarbon products over basic composite catalysts
مجله/کنفرانس: مجله تولید پاک – Journal of Cleaner Production
رشته های تحصیلی مرتبط: شیمی، زیست
گرایش های تحصیلی مرتبط: شیمی کاتالیست، شیمی محیط زیست، بیوشیمی
کلمات کلیدی فارسی: تری گلیسیریدها، پیرولیز، کاتالیزورهای کامپوزیت پایه، دفع اکسیژن، انرژی فعال سازی
کلمات کلیدی انگلیسی: Triglycerides، Pyrolysis، Basic composite catalyst، Deoxygenation، Activation energy
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jclepro.2019.06.109
دانشگاه: Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
صفحات مقاله انگلیسی: 8
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 7.096 در سال 2018
شاخص H_index: 150 در سال 2019
شاخص SJR: 1.620 در سال 2018
شناسه ISSN: 0959-6526
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12783
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Graphical abstract

1. Introduction

2. Experimental

3. Results and discussion

4. Conclusions

Acknowledgments

Appendix A. Supplementary data

Research Data

References

بخشی از مقاله (انگلیسی)

Abstract

Removal of oxygen atoms from triglycerides is the most important step in their conversion into hydrocarbons. Basic catalysts have proven to be highly efficient in deoxygenation, whereby the oxygen atoms are removed in the form of CO and CO2, yielding pyrolytic oil with acid number below 10 mg KOH,g۱ . We have now investigated the deoxygenation abilities of composite basic catalysts during the thermochemical conversion process. The dynamics of the catalytic cracking reaction using metal oxides, such as calcium oxide, in the presence of sodium carbonate, has been tested. According to thermogravimetric analysis (TGA) data, the activation energy for catalytic cracking was influenced by cations. By using calcium oxide as a catalyst, the activation energy was reduced from 260 kJ/mol to 185 kJ/mol, leading to a reduction in the reaction temperature of approximately 20e40 C. The yield of the cracked liquid fraction was of the order of 66e70%, more than 90% of which could be recovered as liquid hydrocarbons. The results presented herein indicate an alternative reaction pathway, allowing thermochemical conversion to be conducted at a lower operational temperature, which would be beneficial for industrial production with lower energy consumption.

Introduction

Biomass is a renewable resource that can be transformed into a variety of chemicals (Dodds and Gross, 2007), biofuels (Dupont et al., 2009a,b), and solid carbon (Simona et al., 2016) through physical and chemical techniques (Liu et al., 2017). The global biomass potential amount is about 200 EJ (up to 600 EJ), accounting for about one-third of the world’s total energy consumption (Rong and Tao, 2016). Making full use of this resource is attractive for addressing resource shortages (Zhang et al., 2018) and environmental pollution problems (Taromi and Kaliaguine, 2018). However, there are economic obstacles to making full use of biomass energy; to obtain the full environmental benefit, green production routes need to be ensured by considering technical conditions, which means green supply chain management (Oliveira. and Rebula, 2018  ). Compared with other research, many cases of biomass production are significantly favorable from an environmental point of view, but government subsidies are needed to fully realize the economic benefits (Haskov a. et al., 2016). So, it is important for economic and environmental friendly production when utilization the biomass energy. Triglycerides are important biomass materials, occurring widely in plant oils and animal fats, and have been used as biofuels for transportation in place of petroleum-based fuels (Lin et al., 2018). Many such oils are used as edible oils in China. As such, considering the economic benefit and resource efficiency, they are not suitable raw materials for hydrocarbon fuels. Nevertheless, abundant waste oil is produced in the refining and consumption of edible oils (Xu et al., 2016). Therefore, non-edible (Marousek et al., 2013) and waste cooking oils (Di_zge N et al., 2009) are primarily used as raw materials.