کنترل توان راکتیو برای خوشه مزرعه بادی در مقیاس بزرگ
ترجمه نشده

کنترل توان راکتیو برای خوشه مزرعه بادی در مقیاس بزرگ

عنوان فارسی مقاله: کنترل فعال غیر متمرکز دو سطحی و توان راکتیو برای خوشه مزرعه بادی در مقیاس بزرگ
عنوان انگلیسی مقاله: Bi-level decentralized active and reactive power control for large-scale wind farm cluster
مجله/کنفرانس: مجله بین المللی سیستم های انرژی و نیروی برق - International Journal of Electrical Power and Energy Systems
رشته های تحصیلی مرتبط: برق
گرایش های تحصیلی مرتبط: توزیع و انتقال، مهندسی کنترل، مهندسی الکترونیک، سیستم های قدرت، برق قدرت
کلمات کلیدی فارسی: پروتکل توافق، قدرت غیرفعال و فعال غیر متمرکز، کنترل، MPC، محاسبه حساسیت، خوشه مزرعه بادی
کلمات کلیدی انگلیسی: Consensus protocol، Decentralized active and reactive power، control، MPC، Sensitivity calculation، Wind farm cluster
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijepes.2019.03.045
دانشگاه: Center for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark, Elektrovej 325, Kgs. Lyngby 2800, Denmark
صفحات مقاله انگلیسی: 15
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 5/627 در سال 2018
شاخص H_index: 100 در سال 2019
شاخص SJR: 1/260 در سال 2018
شناسه ISSN: 0142-0615
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12953
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Bi-level control architecture

3- Consensus-based distributed active power and reactive power dispatch for WFC

4- Centralized MPC-based active and reactive power control of wind farm

5- Case study

6- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

This paper proposes a bi-level decentralized active and reactive power control (DARPC) for the large-scale wind farm cluster (WFC) composed of several wind farms. The WFC tracks the active power reference from the transmission system operator (TSO) while controlling the bus voltage of the point of connection (POC), and maintaining the wind turbine (WT) terminal voltages stable in each wind farm. In the upper level, a distributed active and reactive power control scheme based on the consensus protocol is designed for the WFC, which can achieve fair active and reactive power sharing among multiple wind farms, and generates active and reactive power references for each wind farm. In the lower level, a centralized control scheme based on Model Predictive Control (MPC) is proposed, which can effectively regulates active and reactive power outputs of all WTs within the wind farm. The proposed centralized control scheme can maintain WTs terminal voltage close to the rated voltage while tracking the power reference from the upper level control. The DARPC can effectively reduce the computation burden of the WFC controller by distributing the computation and monitoring tasks to several wind farm controllers. Moreover, the communication cost is reduced. A WFC with 8 wind farms and totally 128 WTs was used to validate the proposed DARPC scheme.

Introduction

Renewable energy, especially wind energy, is developing rapidly over the world because of the pressure of reducing carbon emission and dependence on fossil fuels. The European Wind Energy Association (EWEA) estimates that the installed capacity of wind power could expand to 320 GW by 2030 [1]. In Denmark, the target is to achieve 50% electricity from wind by 2020 and become 100% fossil fuel free by 2050 [2]. As wind power penetration increases, the large-scale wind farm cluster (WFC) is required to have the same level of performance as conventional generation plants [3]. Due to the intermittency of wind power, the increasing wind power penetration has introduced various challenges to the power system operation [4]. Such challenges include power reference tracking, voltage regulation, ancillary services for power systems, etc. [5]. Usually, the short circuit ratio at the point of connection (POC) is small because large-scale wind farms are mainly located in areas far from load centers [6], and the grid at the POC is weak. The voltage fluctuation caused by the wind power variation is quite large. Voltage support at the POC has been specified in several grid codes around the world. The WFC controller receives the power dispatch command and specific technical requirement from the transmission system operator (TSO), such as the POC voltage requirement and reactive power dispatch command [7]. For active power control of the large-scale wind farms, the main control objective is power tracking, and the control strategy can be classified into proportional distribution (PD) control [8,9], proportional-integral (PI) control [10] and optimal active power control [11,12]. Among these, the PD strategy is widely adopted in modern wind farms due to its simple implementation, and considers the available power and Var capability of wind turbines (WTs) [13,14]. The voltage and reactive power control of wind farms, as one of the major topics of wind power integration, have motivated a great number of studies.