پیش بینی تعامل تونل-خاک-شمع بر اساس مدل Kerr Foundation
ترجمه نشده

پیش بینی تعامل تونل-خاک-شمع بر اساس مدل Kerr Foundation

عنوان فارسی مقاله: پیش بینی تحلیلی برای مکانیک تعامل تونل-خاک-شمع بر اساس مدل Kerr Foundation
عنوان انگلیسی مقاله: Analytical Prediction for Tunnel-Soil-Pile Interaction Mechanics based on Kerr Foundation Model
مجله/کنفرانس: مجله Ksce مهندسی عمران - Ksce Journal Of Civil Engineering
رشته های تحصیلی مرتبط: عمران
گرایش های تحصیلی مرتبط: سازه، خاک و پی، مدیریت ساخت
کلمات کلیدی فارسی: راه حل ساده شده، تغییر شکل شمع، تعامل تونل-خاک و شمع، تئوری انقباض حفره، مدل Kerr Foundation
کلمات کلیدی انگلیسی: simplified solution، pile deformation، tunnel-soil-pile interaction، cavity contraction theory، Kerr foundation model
شناسه دیجیتال (DOI): https://doi.org/10.1007/s12205-019-0791-x
دانشگاه: School of Environment and Architecture، University of Shanghai for Science and Technology، Shanghai، China
صفحات مقاله انگلیسی: 16
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 1/572 در سال 2018
شاخص H_index: 26 در سال 2019
شاخص SJR: 0/425 در سال 2018
شناسه ISSN: 1226-7988
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13103
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Analytical Analyses

3- Verification

4- Parameters Analyses

5- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Existing analytical method to predict tunneling-induced pile deformation is generally based on the Winkler foundation model that neglects shear effects of soil, which is not sufficient for engineering practice. A simplified solution based on Kerr foundation model is presented in this study to investigate the tunnel-soil-pile interaction. In order to improve the accuracy of the prediction for tunneling-induced free-field movements, the cavity contraction theory is utilized in the first stage which receives a higher accuracy than the solution proposed by Loganathan and Poulos (1998). In the second stage, the soil free-field displacement is imposed on the existing pile, and the simplified solution for pile deformation governed by the disturbance of passive displacement is established based on the Kerr foundation model, which can take account of the soil shear effects. The applicability and accuracy of the simplified solution are then verified by several cases including the reported analytical solution, centrifuge modeling tests and observed data in situ. Good agreements are obtained in the comparative analyses, which demonstrates that the proposed solution can serve as an alternative approach for conservatively estimating tunneling-induced pile deformation in the preliminary design in clay. Furthermore, the parametric analysis associated with the pile deformation has also been performed. As a result, it is of primarily theoretical and practical significance to investigate the influence of soil shear effects on the tunnel-soil-pile interaction mechanics.

Introduction

Owing to the fast urban development and the rapid growth of urban population, the operative infrastructures are exceedingly demanded in cities. Special attention is gathered on the growing awareness of further constructing the urban underground space. In current, tunnels are more and more frequently encountered in urban area in an attempt to relieve the burden of surface traffic. However, tunnel constructions inevitably cause soil stress changes and ground movements, which may adversely affect the existing structures. For example, tunnel excavation closely spaced to piles will unavoidably cause the piles to deform. To avoid possible damage to adjacent structures, two important aspects must be fully considered by the designer: the pile displacement induced by the deformation of surrounding soil in order to ensure structural serviceability; the additional forces imposed to the piles by the soil displacement in order to ensure structural integrity. Current approaches for the free-field displacement and the tunnel-soil-structure interaction can be classified as the analytical derivation, the numerical simulation, and the in-situ test.