تحلیل اثر شکل بر عملکرد محوری یک میکروپایل موجی شکل
ترجمه نشده

تحلیل اثر شکل بر عملکرد محوری یک میکروپایل موجی شکل

عنوان فارسی مقاله: تجزیه و تحلیل اثر شکل بر عملکرد محوری یک میکروپایل موجی شکل به وسیله آزمایشات مدل سانتریفیوژ
عنوان انگلیسی مقاله: Analysis of the shape effect on the axial performance of a waveform micropile by centrifuge model tests
مجله/کنفرانس: Acta Geotechnica
رشته های تحصیلی مرتبط: عمران
گرایش های تحصیلی مرتبط: سازه، مدیریت ساخت، خاک و پی
کلمات کلیدی فارسی: تست سانتریفیوژ، روش تزریق با فشار بالا، نسبت تقسیم بار، مقاومت در برابر شفت، میکروپایل موجی شکل
کلمات کلیدی انگلیسی: Centrifuge test، Jet grouting method، Load-sharing ratio، Shaft resistance، Waveform micropile
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1007/s11440-018-0657-2
دانشگاه: School of Geospace Engineering, Korea University of Science and Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 10223, Republic of Korea
صفحات مقاله انگلیسی: 14
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 3/889 در سال 2018
شاخص H_index: 36 در سال 2019
شاخص SJR: 2/129 در سال 2018
شناسه ISSN: 1861-1125
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13104
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Centrifuge test

3- Test results and discussion

4- Summary and conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

A new type of micropile, the waveform micropile, has been developed to provide improved load-bearing capacity compared with that of a conventional micropile. The waveform micropile has a wave-shaped grout with a partially enlarged shear key formed by the jet grouting method on the cylindrical shaft of the micropile. Previous research has determined that the waveform micropile can be installed faster than the conventional micropile and that the bearing capacity increases as the wave-shaped grout provides additional shaft resistance between the ground and the grout. In this study, a series of centrifuge model tests were conducted on the waveform micropile model with various wave-shaped grouts to analyze the relationship between the arrangement of the shear key and the load-bearing mechanism of the waveform micropile. The load–settlement relationship and the load-transfer mechanism were analyzed based on the test results of six test micropiles, including three waveform micropiles with a single shear key at various depths, one waveform micropile with a multiple shear key along the pile depth, and two micropiles with only a cylindrical shape. The test results showed that the ultimate bearing capacity of the waveform micropile was over two times greater than that of the conventional micropile. The rate of increase in the bearing capacities of each waveform micropile differed with the shape of the shear key. Furthermore, the characteristics of the load-sharing ratio due to the shaft resistance and end bearing varied depending on the shape of the waveform micropiles.

Introduction

A micropile is a drilled and grouted foundation system that provides relatively high bearing capacity with a small diameter ranging from 100 to 300 mm. The micropile can be installed using fewer pieces of construction equipment than other existing foundation types. For this reason, since its introduction in Italy in the 1950s, the micropile has been recognized as an effective foundation solution for areas of limited access and low headroom. The construction process of the micropile involves drilling the pile shaft to the required depth, installing a temporary casing, and then placing the steel rebar and grout. The high-strength steel rebar transfers the load to the surrounding ground through the grout body to develop frictional resistance. Therefore, the micropile supports the load via the shaft resistance created between the pile shaft and the ground while the load carrying capacity resulting from tip resistance is generally neglected due to small diameter of the micropile [15]. Federal Highway Administration (FHWA) micropile design guidelines specify the bond strength (abond) considering the frictional resistance between the grout and the ground for micropile design [10]. The abond ranges are classified into four types (A–D) according to the ground conditions and grouting types.