گسیلندگی حرارتی سلولهای خورشیدی ناهمگون سیلیکون
ترجمه نشده

گسیلندگی حرارتی سلولهای خورشیدی ناهمگون سیلیکون

عنوان فارسی مقاله: گسیلندگی حرارتی سلولهای خورشیدی ناهمگون سیلیکون
عنوان انگلیسی مقاله: Thermal emissivity of silicon heterojunction solar cells
مجله/کنفرانس: مواد انرژی خورشیدی و سلولهای خورشیدی - Solar Energy Materials And Solar Cells
رشته های تحصیلی مرتبط: مهندسی انرژی، برق
گرایش های تحصیلی مرتبط: انرژی های تجدیدپذیر، فناوری های انرژی
کلمات کلیدی فارسی: سلول هاي خورشيدي، سيليكون، گسیلندگی، ناهمگون، مدل سازي
کلمات کلیدی انگلیسی: Solar cells، Silicon، Emissivity، Heterojunction، Modelling
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.solmat.2019.110051
دانشگاه: Department of Physics, Imperial College London, London, SW7 2AZ, UK
صفحات مقاله انگلیسی: 7
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 6/196 در سال 2018
شاخص H_index: 168 در سال 2019
شاخص SJR: 1/620 در سال 2018
شناسه ISSN: 0927-0248
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13245
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Materials and methods

3- Modelling

4- Results

5- Discussion

6- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

The aim of this work is to evaluate whether silicon heterojunction solar cells, lacking highly emissive, heavily doped silicon layers, could be better candidates for hybrid photovoltaic thermal collectors than standard aluminium-diffused back contact solar cells. To this end, the near and mid infrared emissivity of full silicon heterojunction solar cells, as well as of its constituent materials – crystalline silicon wafer, indium tin oxide, n-, i- and p-type amorphous silicon – have been assessed by means of ellipsometry and FTIR. The experimental results show that the thermal emissivity of these cells is actually as high as in the more traditional structures, ~80% at 8 μm. Detailed optical modelling combining raytracing and transfer matrix formalism shows that the emissivity in these cells originates in the transparent conductive oxide layers themselves, where the doping is not high enough to result in a reflection that exceeds the increased free carrier absorption. Further modelling suggests that it is possible to obtain lower emissivity solar cells, but that a careful optimization of the transparent conductive layer needs to be done to avoid hindering the photovoltaic performance.

Introduction

Thermal emissivity of solar cells is gaining interest both due to its effect on the normal cell operating temperature, and therefore efficiency in the field [1], and due to its effect on the thermal performance of hybrid photovoltaic-thermal (PV-T) collectors [2,3]. We have shown in recent experiments that radiative emissivity of aluminium-diffused back contact solar cells is extremely high, and have deduced from modelling that this originates from the highly doped emitter and back surface field layers [4]. Silicon heterojunctions (SHJ) solar cells offer an excellent opportunity to boost the performance of hybrid PV-T collectors for two reasons. First, their low thermal coefficient of power will help to keep high efficiency at elevated temperatures. The impact of this property in PV-T systems has been analysed in detailed by Mellor et al. [2]. Second, SHJ cells are expected to have lower mid-infrared (MIR) emissivity than the traditional silicon solar cell design as they lack highly doped silicon layers and instead have a front indium tin oxide layer, which is a material often used as a low emissivity coating. In this work we assess the latter hypothesis by measuring the MIR emissivity of a state-of-the-art SHJ solar cell, together with their individual components. Integrated raytracing and transfer-matrix method simulations are used to get further insight into the role and impact of each of the layers that make the structure.