ماژول های فتوولتائیک و استفاده از اتصال خمیر گالینستان
ترجمه نشده

ماژول های فتوولتائیک و استفاده از اتصال خمیر گالینستان

عنوان فارسی مقاله: ماژول های فتوولتائیک و استفاده از یک اتصال متقابل خمیر گالینستان
عنوان انگلیسی مقاله: Photovoltaic Modules Using a Galinstan Paste Interconnection
مجله/کنفرانس: مجله انجمن فیزیک کره - Journal of the Korean Physical Society
رشته های تحصیلی مرتبط: برق
گرایش های تحصیلی مرتبط: الکترونیک، الکترونیک قدرت، انتقال و توزیع
کلمات کلیدی فارسی: ماژول خم شده، سلول خورشیدی بلورین، گالینستان
کلمات کلیدی انگلیسی: Shingled module، Crystalline silicon solar cell، Galinstan
شناسه دیجیتال (DOI): https://doi.org/10.3938/jkps.74.1184
دانشگاه: Photovoltaic Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea and School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
صفحات مقاله انگلیسی: 6
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 0/653 در سال 2018
شاخص H_index: 42 در سال 2019
شاخص SJR: 0/220 در سال 2018
شناسه ISSN: 0374-4884
شاخص Quartile (چارک): Q3 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13252
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

I- INTRODUCTION

II- EXPERIMENTS AND DISCUSSION

III- CONCLUSION

REFERENCES

بخشی از مقاله (انگلیسی)

INTRODUCTION

A solar cell is a semiconductor device that converts light energy into electric energy and should be manufactured in the form of a module to function for a long time without being affected by exposure to external environments. In a typical solar cell module, solar cells are connected in series with each other by using a ribbon. Materials such as ethyl vinyl acetate (EVA), back sheet, and glass are laminated by applying heat on both ends of the solar cells for protection, and finally, the module is completed within a frame [1]. At this point, the loss that occurs during the manufacturing process of the solar cell module depends on the resistance of the ribbon that connects the solar cell, the contact resistance between the ribbon and the solar cell electrode, the shadow loss due to the electrode and the ribbon, and the area loss occurring at the in tervals between the solar cells [2–4]. One of the ways to reduce these losses is to fabricate a module by using a laser to cut high-efficiency solar cells within each unit cell and then connect the unit cells directly within a shingled structure without using a ribbon [5, 6]. The shingled module has the advantage of producing more electric power per area than currently commercialized modules because the former eliminates the contact resistance due to the ribbon, the shadow loss caused by the busbar and the gap between each solar cell. A pattern different from that of a conventional solar cell is used to fabricate a shingled module. Because the busbar of a conventional solar cell exists at the same position on both sides of the solar cell, the ribbon is connected in a serial connection, but the busbar of the unit cell used for the shingled module is located at the edges of both sides of the cell. Therefore, each cell is connected using electrically conductive adhesives (ECAs). In this case, the ECA, which is a conductive epoxy material, has high electrical conductivity, a high content of silver and a high unit price and should be stored at −20◦C to prevent epoxy hardening [7]. Additionally, because the shingled module is heated and cured during the fabrication process, cell breakage or damage may occur [8,9]. Therefore, when fabricating a solar cell module by using the liquid metal Galinstan as a connecting material for a thin crystal silicon solar cell, damage due to the difference in the thermal expansion coefficients between the cell and the ribbon can be prevented [10]. Because Galinstan is much cheaper than Ag particles, Galinstan as an interconnection material has an advantages in fabrication cost. Moreover, by using liquid silicone, breakage that may be caused by the difference between the manufacturing of the shingled module and the unit cell may be prevented. In this study, we fabricated a shingled module by using Galinstan paste and liquid silicone and confirmed any damage that might have occurred during the manufacturing of the module, as well as the differences in the module’s characteristics.