مدل الاستوپلاستیک چند لایه نیمه ریز
ترجمه نشده

مدل الاستوپلاستیک چند لایه نیمه ریز

عنوان فارسی مقاله: یک مدل الاستوپلاستیک چند لایه نیمه ریز جدید برای روان شدگی ماسه
عنوان انگلیسی مقاله: A novel semi-micro multilaminate elasto-plastic model for the liquefaction of sand
مجله/کنفرانس: دینامیک خاک و مهندسی زلزله – Soil Dynamics and Earthquake Engineering
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: خاک و پی
کلمات کلیدی فارسی: مواد دانه ای، حق سازندگی، صفحه ریز، ناهمسانی القایی، تحرک چرخه ای
کلمات کلیدی انگلیسی: Granular material، Constitutive law، Micro plane، Induced anisotropy، Cyclic mobility
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.soildyn.2019.05.031
دانشگاه: Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
صفحات مقاله انگلیسی: 15
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 2.989 در سال 2018
شاخص H_index: 78 در سال 2019
شاخص SJR: 1.359 در سال 2018
شناسه ISSN: 0267-7261
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13417
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Multilaminate theory

3. Constitutive law on the planes

4. Determination of the model constants

5. Simulation and comparison

6. Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

After the liquefaction of sand, the prediction of anisotropy and heterogeneity is one of the complexities of constitutive law. This study aimed to develop a method to more effectively assess anisotropy and strain and stress distributions, and determine their history in cohesionless soil. To achieve this objective, instead of defining all the direction-dependent events on the three orthogonal planes of the Cartesian coordinate system, numerical integration was utilized to make use of 17 planes with pre-defined directions. This leads to a more accurate and powerful assessment of anisotropy and its effects. The constitutive equations of the proposed model were adjusted with a multilaminate framework, and its result for different monotonic and cyclic loading, drained and undrained conditions, and different pressures and void ratios were verified using the experimental data. Finally, the model’s performance in predicting induced anisotropy is demonstrated under cyclic mobility conditions on the 17 planes.

Introduction

The constitutive characteristics of sand as a basic geomaterial have a significant effect on its applications. Developing a constitutive model for sand, and especially its liquefaction, is a challenging task. Under monotonic or cyclic loading conditions, sandy soils tend to exhibit dilatancy. In undrained conditions, this behavior leads to increased pore pressure and decreased effective stress, and this reduction can sometimes lead to liquefaction. Another important parameter that can affect soil liquefaction resistance under cyclic loads is inherent and induced anisotropy due to plastic deformation, which can be defined as the properties of soil fabric. Some studies have tried to establish a relationship between the important microscopic and macroscopic properties of sand, and incorporate the result into their constitutive models [1,2]. There are essentially two types of anisotropy in granular material, inherent anisotropy and induced anisotropy. Inherent anisotropy is created during the sedimentation of geomaterials as a result of the placement of the soil particles, the void ratio, and the inter-particle contact [3,4]. Inherent anisotropy remains unchanged as long as the material is in its elastic state. Induced anisotropy occurs under the influence of plastic strain and loading history, and it plays a significant role in the mechanical behavior of granular soils [2,5]. Unlike inherent anisotropy, induced anisotropy evolves with plastic deformation over the course of the loading process. While many studies have examined soil anisotropy, the development of anisotropy during liquefaction and the ensuing effects, including changes in effective stress and soil stiffness, are still under debate. Anisotropy in granular soils subjected to cyclic or monotonic loading has also been extensively studied [6–10]. Some researchers have studied the inter-particle contact level and have also predicted the effects of anisotropy on the behavior of granular soil using micromechanical models, such as the discrete element model [11–17].