سیستم های تسهیم تقسیم فرکانس کلی
ترجمه نشده

سیستم های تسهیم تقسیم فرکانس کلی

عنوان فارسی مقاله: سیستم های تسهیم تقسیم فرکانس کلی (GFDM) کد شده قطبی
عنوان انگلیسی مقاله: Polar-Coded GFDM Systems
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: برق مخابرات
کلمات کلیدی فارسی: کدهای قطبی، مدولاسیون تسهیم تقسیم فرکانس کلی، انتقال کانال دو مرحله ای، مدولاسیون کد شده درهم آمیخته ذره ای (BICM)، کد نویسی چند سطحی
کلمات کلیدی انگلیسی: Polar codes, GFDM modulation, two-stage channel transform, BICM, MLC
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2947254
دانشگاه: Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
صفحات مقاله انگلیسی: 9
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13868
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Notations and System Model

III. Channel Polarization Transform

IV. Practical Implementation of PC-GFDM Systems

V. Performance Evaluation

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

Generalized frequency division multiplexing (GFDM) is a block-based non-orthogonal multicarrier modulation scheme proposed for 5G PHY layer. In this paper, to efficiently coordinate the features of interference existing in the GFDM system, we propose a theoretical framework of the polar-coded GFDM (PC-GFDM) system, which allows jointly optimizing the combination of binary polar coding and GFDM modulation. The original GFDM channel is decomposed into multiple bit polarized channels by using a two-stage channel transform. The general modulation partition is performed in the first stage and the bit polarization transform is done in the second stage. Specifically, two schemes are considered for the first stage channel transform, multilevel coding (MLC) and bit-interleaved coded modulation (BICM). Based on the theorem we have proved in this paper that the capacities of channels corresponding to all transmitted symbols are identical, the MLC based PC-GFDM system is designed to optimize the combining of polar codes and GFDM system. Then the BICM based PC-GFDM system is designed to reduce the complexity and processing latency, which yields the suboptimal performance. Simulation results indicate that the proposed PC-GFDM systems significantly outperform the existing turbo-coded GFDM systems because of the joint design between the polar coding and the GFDM modulation.

Introduction

Polar codes proposed by Arıkan [1] are the first constructive codes that have been proved to achieve the symmetric capacity for the binary-input memoryless channels (BMCs). This capacity-achieving code family is based on a technique named channel polarization, which recently has been employed in many scenarios for signal processing. In 2013, Seidl et al. have introduced the channel polarization idea into the 2m-ary modulation scheme [2] and proposed two different polar-coded modulation (PCM) schemes, where the bit-interleaved coded modulation (BICM) [3] and multilevel coding (MLC) approaches are considered respectively. Later, by extending the channel polarization idea to non-orthogonal multiple access (NOMA) scenario, whereby the original NOMA channel is split into a set of binary-input channels under a three-stage channel transform, Dai et al design a polar-coded NOMA system [4] to jointly optimize the combination of binary polar coding, signal modulation and NOMA transmission. Similarly, polar-coded multiple-input multiple-output (MIMO) schemes [5] also have been developed to improve the system performance.